Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s + 7-s − 8-s + 9-s + 10-s − 12-s − 13-s − 14-s + 15-s + 16-s + 17-s − 18-s + 4·19-s − 20-s − 21-s + 8·23-s + 24-s + 25-s + 26-s − 27-s + 28-s − 2·29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.218·21-s + 1.66·23-s + 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s + 0.188·28-s − 0.371·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(46410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{46410} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 46410,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5,\;7,\;13,\;17\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7,\;13,\;17\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 16 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.99634412572286, −14.52568681828096, −13.78959266284142, −13.34145898296455, −12.54563325584139, −12.12111661221410, −11.82487742731376, −11.07922688573074, −10.70391022501125, −10.43442446725618, −9.474479007978960, −9.133464467855883, −8.723120396177306, −7.740350743455040, −7.504845656904374, −7.111029870518418, −6.348482829472748, −5.643083895221918, −5.247469627376562, −4.504949214607901, −3.901553155591877, −3.021747925207448, −2.521289913273713, −1.402760881906482, −0.9724223418248606, 0, 0.9724223418248606, 1.402760881906482, 2.521289913273713, 3.021747925207448, 3.901553155591877, 4.504949214607901, 5.247469627376562, 5.643083895221918, 6.348482829472748, 7.111029870518418, 7.504845656904374, 7.740350743455040, 8.723120396177306, 9.133464467855883, 9.474479007978960, 10.43442446725618, 10.70391022501125, 11.07922688573074, 11.82487742731376, 12.12111661221410, 12.54563325584139, 13.34145898296455, 13.78959266284142, 14.52568681828096, 14.99634412572286

Graph of the $Z$-function along the critical line