L(s) = 1 | − 3-s + 9-s − 4·11-s + 2·13-s − 2·17-s − 4·19-s − 8·23-s − 27-s − 2·29-s − 8·31-s + 4·33-s − 37-s − 2·39-s + 10·41-s + 12·43-s − 7·49-s + 2·51-s − 6·53-s + 4·57-s − 4·59-s − 10·61-s − 4·67-s + 8·69-s − 8·71-s + 6·73-s + 8·79-s + 81-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 1.20·11-s + 0.554·13-s − 0.485·17-s − 0.917·19-s − 1.66·23-s − 0.192·27-s − 0.371·29-s − 1.43·31-s + 0.696·33-s − 0.164·37-s − 0.320·39-s + 1.56·41-s + 1.82·43-s − 49-s + 0.280·51-s − 0.824·53-s + 0.529·57-s − 0.520·59-s − 1.28·61-s − 0.488·67-s + 0.963·69-s − 0.949·71-s + 0.702·73-s + 0.900·79-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 44400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3534144891\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3534144891\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 - 10 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.69796694865100, −14.08177864475589, −13.60015437445668, −13.00795699185803, −12.52051892084466, −12.31643278748361, −11.33787279410287, −10.98014262458064, −10.65550528613966, −10.10739217117142, −9.331940500769041, −9.013173194780919, −8.108065296960344, −7.787685491242534, −7.267071676592791, −6.377652604159069, −6.015428295387967, −5.550663072172700, −4.806314437020335, −4.203956459247198, −3.718409059429040, −2.740025267487433, −2.141350717168606, −1.424968442595003, −0.2159638353039421,
0.2159638353039421, 1.424968442595003, 2.141350717168606, 2.740025267487433, 3.718409059429040, 4.203956459247198, 4.806314437020335, 5.550663072172700, 6.015428295387967, 6.377652604159069, 7.267071676592791, 7.787685491242534, 8.108065296960344, 9.013173194780919, 9.331940500769041, 10.10739217117142, 10.65550528613966, 10.98014262458064, 11.33787279410287, 12.31643278748361, 12.52051892084466, 13.00795699185803, 13.60015437445668, 14.08177864475589, 14.69796694865100