Properties

Degree $2$
Conductor $4410$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s + 4·11-s − 2·13-s + 16-s + 8·17-s + 6·19-s + 20-s − 4·22-s + 4·23-s + 25-s + 2·26-s + 6·29-s − 4·31-s − 32-s − 8·34-s − 10·37-s − 6·38-s − 40-s + 4·41-s + 4·43-s + 4·44-s − 4·46-s + 4·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s + 1.20·11-s − 0.554·13-s + 1/4·16-s + 1.94·17-s + 1.37·19-s + 0.223·20-s − 0.852·22-s + 0.834·23-s + 1/5·25-s + 0.392·26-s + 1.11·29-s − 0.718·31-s − 0.176·32-s − 1.37·34-s − 1.64·37-s − 0.973·38-s − 0.158·40-s + 0.624·41-s + 0.609·43-s + 0.603·44-s − 0.589·46-s + 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4410\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{4410} (1, \cdot )$
Sato-Tate group: $\mathrm{SU}(2)$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.876808820\)
\(L(\frac12)\) \(\approx\) \(1.876808820\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.83597571430629, −17.32197246167581, −16.89031318620616, −16.25795432523217, −15.71217155564099, −14.78398335827768, −14.23556916097761, −13.96467073006275, −12.83406984036577, −12.04747928459192, −11.94004691814672, −10.90822482491683, −10.27334027953754, −9.578049782696529, −9.244782610554628, −8.453534801851307, −7.482910949298702, −7.188251550345608, −6.210004039895656, −5.548295910492917, −4.764711413056078, −3.497572900941915, −2.940489246014587, −1.614627761666430, −0.9468607016068558, 0.9468607016068558, 1.614627761666430, 2.940489246014587, 3.497572900941915, 4.764711413056078, 5.548295910492917, 6.210004039895656, 7.188251550345608, 7.482910949298702, 8.453534801851307, 9.244782610554628, 9.578049782696529, 10.27334027953754, 10.90822482491683, 11.94004691814672, 12.04747928459192, 12.83406984036577, 13.96467073006275, 14.23556916097761, 14.78398335827768, 15.71217155564099, 16.25795432523217, 16.89031318620616, 17.32197246167581, 17.83597571430629

Graph of the $Z$-function along the critical line