Properties

Label 2-40898-1.1-c1-0-39
Degree $2$
Conductor $40898$
Sign $-1$
Analytic cond. $326.572$
Root an. cond. $18.0713$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s + 3·5-s − 2·6-s − 2·7-s + 8-s + 9-s + 3·10-s − 2·12-s − 2·14-s − 6·15-s + 16-s + 3·17-s + 18-s − 2·19-s + 3·20-s + 4·21-s + 6·23-s − 2·24-s + 4·25-s + 4·27-s − 2·28-s − 3·29-s − 6·30-s − 2·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s + 1.34·5-s − 0.816·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.577·12-s − 0.534·14-s − 1.54·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.458·19-s + 0.670·20-s + 0.872·21-s + 1.25·23-s − 0.408·24-s + 4/5·25-s + 0.769·27-s − 0.377·28-s − 0.557·29-s − 1.09·30-s − 0.359·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40898 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40898 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40898\)    =    \(2 \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(326.572\)
Root analytic conductor: \(18.0713\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40898,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.83252489815880, −14.49042309344208, −13.94677994858801, −13.26377326434779, −12.88001721218453, −12.68116405768178, −11.91005352521213, −11.39996492468646, −10.88722189589920, −10.40037802209197, −9.899430427464274, −9.352350021543841, −8.861586630504885, −7.913741763488150, −7.210051495446534, −6.590119907364614, −6.218999319275119, −5.721469874241977, −5.370241463284519, −4.743853447481495, −4.059205521172059, −3.056304258152787, −2.759838716650724, −1.738255377969612, −1.094801582720133, 0, 1.094801582720133, 1.738255377969612, 2.759838716650724, 3.056304258152787, 4.059205521172059, 4.743853447481495, 5.370241463284519, 5.721469874241977, 6.218999319275119, 6.590119907364614, 7.210051495446534, 7.913741763488150, 8.861586630504885, 9.352350021543841, 9.899430427464274, 10.40037802209197, 10.88722189589920, 11.39996492468646, 11.91005352521213, 12.68116405768178, 12.88001721218453, 13.26377326434779, 13.94677994858801, 14.49042309344208, 14.83252489815880

Graph of the $Z$-function along the critical line