Properties

Label 2-40560-1.1-c1-0-27
Degree $2$
Conductor $40560$
Sign $1$
Analytic cond. $323.873$
Root an. cond. $17.9964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 4·7-s + 9-s − 15-s − 2·17-s + 4·19-s − 4·21-s + 8·23-s + 25-s − 27-s − 6·29-s + 4·35-s + 6·37-s − 10·41-s + 4·43-s + 45-s + 8·47-s + 9·49-s + 2·51-s + 10·53-s − 4·57-s + 6·61-s + 4·63-s − 4·67-s − 8·69-s + 14·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s − 0.258·15-s − 0.485·17-s + 0.917·19-s − 0.872·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 0.676·35-s + 0.986·37-s − 1.56·41-s + 0.609·43-s + 0.149·45-s + 1.16·47-s + 9/7·49-s + 0.280·51-s + 1.37·53-s − 0.529·57-s + 0.768·61-s + 0.503·63-s − 0.488·67-s − 0.963·69-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(323.873\)
Root analytic conductor: \(17.9964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.102612563\)
\(L(\frac12)\) \(\approx\) \(3.102612563\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.87114247186786, −14.27128105186120, −13.66981776452645, −13.28099269186838, −12.72998279115699, −11.97924871255123, −11.60849138523407, −11.06186423143917, −10.79510823463208, −10.13535543299975, −9.411608265776341, −9.005504933824223, −8.364111660854386, −7.769945027320821, −7.124238007476809, −6.830321776687621, −5.819429699641103, −5.435991778922042, −4.974692211503937, −4.401967151519942, −3.693414476446511, −2.757558142592397, −2.058160321039696, −1.341244879248390, −0.7281305196615273, 0.7281305196615273, 1.341244879248390, 2.058160321039696, 2.757558142592397, 3.693414476446511, 4.401967151519942, 4.974692211503937, 5.435991778922042, 5.819429699641103, 6.830321776687621, 7.124238007476809, 7.769945027320821, 8.364111660854386, 9.005504933824223, 9.411608265776341, 10.13535543299975, 10.79510823463208, 11.06186423143917, 11.60849138523407, 11.97924871255123, 12.72998279115699, 13.28099269186838, 13.66981776452645, 14.27128105186120, 14.87114247186786

Graph of the $Z$-function along the critical line