Properties

Degree 2
Conductor $ 2^{6} \cdot 3^{2} \cdot 7 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 4·13-s − 6·17-s + 2·19-s − 5·25-s − 6·29-s + 4·31-s − 2·37-s − 6·41-s + 8·43-s − 12·47-s + 49-s + 6·53-s + 6·59-s − 8·61-s − 4·67-s + 2·73-s − 8·79-s + 6·83-s + 6·89-s − 4·91-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.377·7-s + 1.10·13-s − 1.45·17-s + 0.458·19-s − 25-s − 1.11·29-s + 0.718·31-s − 0.328·37-s − 0.937·41-s + 1.21·43-s − 1.75·47-s + 1/7·49-s + 0.824·53-s + 0.781·59-s − 1.02·61-s − 0.488·67-s + 0.234·73-s − 0.900·79-s + 0.658·83-s + 0.635·89-s − 0.419·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{4032} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 4032,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;7\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.36081399030851, −17.80042647125418, −17.30249801019335, −16.43657335561612, −15.94379927165631, −15.42409691198000, −14.84097516408900, −13.87040531540065, −13.42156421966388, −13.02232184067069, −12.07679154073634, −11.44127273087068, −10.92542671682847, −10.15637420508376, −9.418246733811477, −8.820467157922334, −8.146186617845744, −7.314465566809167, −6.527365314108944, −5.985787397461133, −5.104943124592753, −4.134131443861831, −3.517193548288586, −2.459631097624559, −1.450762847926064, 0, 1.450762847926064, 2.459631097624559, 3.517193548288586, 4.134131443861831, 5.104943124592753, 5.985787397461133, 6.527365314108944, 7.314465566809167, 8.146186617845744, 8.820467157922334, 9.418246733811477, 10.15637420508376, 10.92542671682847, 11.44127273087068, 12.07679154073634, 13.02232184067069, 13.42156421966388, 13.87040531540065, 14.84097516408900, 15.42409691198000, 15.94379927165631, 16.43657335561612, 17.30249801019335, 17.80042647125418, 18.36081399030851

Graph of the $Z$-function along the critical line