Properties

Label 2-388080-1.1-c1-0-353
Degree $2$
Conductor $388080$
Sign $-1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 11-s + 6·13-s + 2·17-s + 6·23-s + 25-s − 6·29-s − 2·31-s + 10·37-s − 8·41-s + 8·43-s − 4·47-s − 6·53-s − 55-s + 6·59-s + 8·61-s − 6·65-s − 14·67-s − 8·71-s + 2·73-s + 16·79-s − 12·83-s − 2·85-s − 18·89-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.301·11-s + 1.66·13-s + 0.485·17-s + 1.25·23-s + 1/5·25-s − 1.11·29-s − 0.359·31-s + 1.64·37-s − 1.24·41-s + 1.21·43-s − 0.583·47-s − 0.824·53-s − 0.134·55-s + 0.781·59-s + 1.02·61-s − 0.744·65-s − 1.71·67-s − 0.949·71-s + 0.234·73-s + 1.80·79-s − 1.31·83-s − 0.216·85-s − 1.90·89-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
good13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84969401625678, −12.16610309464549, −11.72440506406212, −11.23031278573080, −10.97845162878778, −10.65950711669270, −9.887701807508613, −9.478374066607666, −9.082646377898084, −8.469813386958480, −8.301340052677213, −7.620055283983426, −7.230512432315936, −6.714123214366341, −6.219676891789262, −5.696378541312088, −5.374501758329274, −4.599620672784523, −4.172875038858059, −3.670141759722050, −3.222536856576692, −2.748494231750632, −1.892637580038952, −1.281796617217236, −0.8944562147916746, 0, 0.8944562147916746, 1.281796617217236, 1.892637580038952, 2.748494231750632, 3.222536856576692, 3.670141759722050, 4.172875038858059, 4.599620672784523, 5.374501758329274, 5.696378541312088, 6.219676891789262, 6.714123214366341, 7.230512432315936, 7.620055283983426, 8.301340052677213, 8.469813386958480, 9.082646377898084, 9.478374066607666, 9.887701807508613, 10.65950711669270, 10.97845162878778, 11.23031278573080, 11.72440506406212, 12.16610309464549, 12.84969401625678

Graph of the $Z$-function along the critical line