Properties

Label 2-388080-1.1-c1-0-3
Degree $2$
Conductor $388080$
Sign $1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 2·13-s − 6·17-s + 8·19-s − 6·23-s + 25-s − 6·29-s + 2·31-s + 2·37-s − 8·43-s + 12·47-s − 6·53-s + 55-s − 6·59-s − 8·61-s + 2·65-s − 2·67-s + 10·73-s − 8·79-s − 12·83-s + 6·85-s + 6·89-s − 8·95-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 0.554·13-s − 1.45·17-s + 1.83·19-s − 1.25·23-s + 1/5·25-s − 1.11·29-s + 0.359·31-s + 0.328·37-s − 1.21·43-s + 1.75·47-s − 0.824·53-s + 0.134·55-s − 0.781·59-s − 1.02·61-s + 0.248·65-s − 0.244·67-s + 1.17·73-s − 0.900·79-s − 1.31·83-s + 0.650·85-s + 0.635·89-s − 0.820·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2898009418\)
\(L(\frac12)\) \(\approx\) \(0.2898009418\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.42045372089423, −11.89179972331057, −11.67815113373230, −11.07073167033801, −10.82919026352281, −10.06143955250216, −9.843108712158537, −9.252230885827842, −8.916623612426786, −8.319612276432558, −7.789383261658664, −7.458112249853706, −7.116562877242171, −6.426974911538845, −6.003459500295090, −5.447189202428992, −4.922578542627534, −4.518407775557730, −3.927042051716812, −3.477927559524689, −2.822722469815421, −2.373662148358164, −1.728046321414101, −1.089877228495971, −0.1435780879244050, 0.1435780879244050, 1.089877228495971, 1.728046321414101, 2.373662148358164, 2.822722469815421, 3.477927559524689, 3.927042051716812, 4.518407775557730, 4.922578542627534, 5.447189202428992, 6.003459500295090, 6.426974911538845, 7.116562877242171, 7.458112249853706, 7.789383261658664, 8.319612276432558, 8.916623612426786, 9.252230885827842, 9.843108712158537, 10.06143955250216, 10.82919026352281, 11.07073167033801, 11.67815113373230, 11.89179972331057, 12.42045372089423

Graph of the $Z$-function along the critical line