Properties

Label 2-37440-1.1-c1-0-55
Degree $2$
Conductor $37440$
Sign $1$
Analytic cond. $298.959$
Root an. cond. $17.2904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·11-s − 13-s + 6·17-s + 4·19-s + 8·23-s + 25-s + 6·29-s + 8·31-s + 10·37-s + 6·41-s + 4·43-s − 7·49-s − 10·53-s − 4·55-s − 4·59-s + 2·61-s − 65-s − 12·67-s + 16·71-s + 2·73-s + 16·79-s + 12·83-s + 6·85-s − 10·89-s + 4·95-s − 6·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.20·11-s − 0.277·13-s + 1.45·17-s + 0.917·19-s + 1.66·23-s + 1/5·25-s + 1.11·29-s + 1.43·31-s + 1.64·37-s + 0.937·41-s + 0.609·43-s − 49-s − 1.37·53-s − 0.539·55-s − 0.520·59-s + 0.256·61-s − 0.124·65-s − 1.46·67-s + 1.89·71-s + 0.234·73-s + 1.80·79-s + 1.31·83-s + 0.650·85-s − 1.05·89-s + 0.410·95-s − 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37440\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(298.959\)
Root analytic conductor: \(17.2904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 37440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.200385042\)
\(L(\frac12)\) \(\approx\) \(3.200385042\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.83891165962751, −14.25481067764046, −13.89345835192770, −13.27813579696390, −12.78129646176646, −12.35191580803005, −11.77974982793840, −11.03385192634564, −10.70845430960933, −9.986141697419457, −9.630105230799885, −9.182546002938265, −8.258805422611527, −7.812243472253325, −7.506410782581619, −6.590174190644128, −6.144470377631451, −5.376720384279619, −4.986021145404613, −4.477638194095181, −3.329654133973195, −2.897575065693753, −2.419137578866953, −1.205565912806727, −0.7645465119071156, 0.7645465119071156, 1.205565912806727, 2.419137578866953, 2.897575065693753, 3.329654133973195, 4.477638194095181, 4.986021145404613, 5.376720384279619, 6.144470377631451, 6.590174190644128, 7.506410782581619, 7.812243472253325, 8.258805422611527, 9.182546002938265, 9.630105230799885, 9.986141697419457, 10.70845430960933, 11.03385192634564, 11.77974982793840, 12.35191580803005, 12.78129646176646, 13.27813579696390, 13.89345835192770, 14.25481067764046, 14.83891165962751

Graph of the $Z$-function along the critical line