Properties

Label 2-371649-1.1-c1-0-2
Degree $2$
Conductor $371649$
Sign $-1$
Analytic cond. $2967.63$
Root an. cond. $54.4759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s + 9-s − 6·11-s + 2·12-s + 4·13-s − 4·16-s − 7·17-s + 2·18-s + 5·19-s − 12·22-s − 23-s − 5·25-s + 8·26-s + 27-s − 29-s − 4·31-s − 8·32-s − 6·33-s − 14·34-s + 2·36-s − 3·37-s + 10·38-s + 4·39-s − 12·44-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s + 1/3·9-s − 1.80·11-s + 0.577·12-s + 1.10·13-s − 16-s − 1.69·17-s + 0.471·18-s + 1.14·19-s − 2.55·22-s − 0.208·23-s − 25-s + 1.56·26-s + 0.192·27-s − 0.185·29-s − 0.718·31-s − 1.41·32-s − 1.04·33-s − 2.40·34-s + 1/3·36-s − 0.493·37-s + 1.62·38-s + 0.640·39-s − 1.80·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 371649 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 371649 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(371649\)    =    \(3 \cdot 43^{2} \cdot 67\)
Sign: $-1$
Analytic conductor: \(2967.63\)
Root analytic conductor: \(54.4759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 371649,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
43 \( 1 \)
67 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + p T^{2} \) 1.41.a
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 2 T + p T^{2} \) 1.61.c
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00790151752050, −12.44364159302050, −11.97019863894752, −11.33552001201244, −11.12985273523012, −10.58330525641611, −10.15965307907732, −9.467533363489391, −9.064208603027857, −8.622336819118775, −8.080965869911054, −7.623516358338530, −7.166115544010178, −6.593824776473997, −6.101649357091048, −5.607240903288553, −5.148191734175272, −4.837576646464523, −4.103124805119255, −3.712238922208798, −3.360815486032203, −2.648613539676754, −2.250294487393313, −1.867591975674871, −0.7722893013465825, 0, 0.7722893013465825, 1.867591975674871, 2.250294487393313, 2.648613539676754, 3.360815486032203, 3.712238922208798, 4.103124805119255, 4.837576646464523, 5.148191734175272, 5.607240903288553, 6.101649357091048, 6.593824776473997, 7.166115544010178, 7.623516358338530, 8.080965869911054, 8.622336819118775, 9.064208603027857, 9.467533363489391, 10.15965307907732, 10.58330525641611, 11.12985273523012, 11.33552001201244, 11.97019863894752, 12.44364159302050, 13.00790151752050

Graph of the $Z$-function along the critical line