Properties

Label 2-366912-1.1-c1-0-168
Degree $2$
Conductor $366912$
Sign $1$
Analytic cond. $2929.80$
Root an. cond. $54.1276$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 5·11-s − 13-s + 3·17-s + 19-s + 23-s + 4·25-s − 5·29-s − 8·31-s − 37-s − 12·41-s + 11·43-s − 8·47-s + 10·53-s + 15·55-s − 8·59-s + 13·61-s − 3·65-s + 2·67-s + 8·71-s − 11·73-s − 2·79-s − 18·83-s + 9·85-s + 18·89-s + 3·95-s − 10·97-s + ⋯
L(s)  = 1  + 1.34·5-s + 1.50·11-s − 0.277·13-s + 0.727·17-s + 0.229·19-s + 0.208·23-s + 4/5·25-s − 0.928·29-s − 1.43·31-s − 0.164·37-s − 1.87·41-s + 1.67·43-s − 1.16·47-s + 1.37·53-s + 2.02·55-s − 1.04·59-s + 1.66·61-s − 0.372·65-s + 0.244·67-s + 0.949·71-s − 1.28·73-s − 0.225·79-s − 1.97·83-s + 0.976·85-s + 1.90·89-s + 0.307·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(366912\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2929.80\)
Root analytic conductor: \(54.1276\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 366912,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.449619734\)
\(L(\frac12)\) \(\approx\) \(4.449619734\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59298952434072, −11.96207370568831, −11.68137016787542, −11.19807252409100, −10.61059923757246, −10.14272312815749, −9.772125942117018, −9.287586382122740, −9.087366830547316, −8.555187359029061, −7.942197683636216, −7.255396899120578, −6.984371493185211, −6.485354228110501, −5.929310644443987, −5.491595443463253, −5.270238150760113, −4.465407543906352, −3.932630778801224, −3.415448744171345, −2.939921281537873, −2.001282089259252, −1.856771329850706, −1.239120575643276, −0.5428131676093102, 0.5428131676093102, 1.239120575643276, 1.856771329850706, 2.001282089259252, 2.939921281537873, 3.415448744171345, 3.932630778801224, 4.465407543906352, 5.270238150760113, 5.491595443463253, 5.929310644443987, 6.485354228110501, 6.984371493185211, 7.255396899120578, 7.942197683636216, 8.555187359029061, 9.087366830547316, 9.287586382122740, 9.772125942117018, 10.14272312815749, 10.61059923757246, 11.19807252409100, 11.68137016787542, 11.96207370568831, 12.59298952434072

Graph of the $Z$-function along the critical line