Properties

Label 2-366400-1.1-c1-0-54
Degree $2$
Conductor $366400$
Sign $-1$
Analytic cond. $2925.71$
Root an. cond. $54.0899$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 3·9-s + 4·11-s + 2·13-s + 2·17-s + 8·19-s + 2·23-s − 10·29-s − 2·31-s + 6·37-s + 10·41-s + 8·43-s − 2·47-s − 3·49-s + 10·53-s − 6·59-s − 2·61-s + 6·63-s + 2·67-s + 14·73-s − 8·77-s − 14·79-s + 9·81-s − 6·89-s − 4·91-s − 6·97-s − 12·99-s + ⋯
L(s)  = 1  − 0.755·7-s − 9-s + 1.20·11-s + 0.554·13-s + 0.485·17-s + 1.83·19-s + 0.417·23-s − 1.85·29-s − 0.359·31-s + 0.986·37-s + 1.56·41-s + 1.21·43-s − 0.291·47-s − 3/7·49-s + 1.37·53-s − 0.781·59-s − 0.256·61-s + 0.755·63-s + 0.244·67-s + 1.63·73-s − 0.911·77-s − 1.57·79-s + 81-s − 0.635·89-s − 0.419·91-s − 0.609·97-s − 1.20·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(366400\)    =    \(2^{6} \cdot 5^{2} \cdot 229\)
Sign: $-1$
Analytic conductor: \(2925.71\)
Root analytic conductor: \(54.0899\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 366400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
229 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75866035403334, −12.26951916728079, −11.68938468824213, −11.44952939437415, −11.04788376353747, −10.60604665672452, −9.736261242097180, −9.539929732309204, −9.153685265092603, −8.875537479512369, −8.094980054968222, −7.669559744138613, −7.233985224099858, −6.764785113044694, −5.975169104333870, −5.926372417215080, −5.440825418946503, −4.806494151939097, −3.916710681005216, −3.796056539048939, −3.154793492221391, −2.768800983415399, −2.062046385227663, −1.181293100029866, −0.9029630994044640, 0, 0.9029630994044640, 1.181293100029866, 2.062046385227663, 2.768800983415399, 3.154793492221391, 3.796056539048939, 3.916710681005216, 4.806494151939097, 5.440825418946503, 5.926372417215080, 5.975169104333870, 6.764785113044694, 7.233985224099858, 7.669559744138613, 8.094980054968222, 8.875537479512369, 9.153685265092603, 9.539929732309204, 9.736261242097180, 10.60604665672452, 11.04788376353747, 11.44952939437415, 11.68938468824213, 12.26951916728079, 12.75866035403334

Graph of the $Z$-function along the critical line