Properties

Label 2-36432-1.1-c1-0-64
Degree $2$
Conductor $36432$
Sign $-1$
Analytic cond. $290.910$
Root an. cond. $17.0561$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 11-s + 2·13-s − 2·19-s + 23-s − 5·25-s + 10·29-s − 4·31-s + 2·37-s + 2·41-s − 2·43-s − 8·47-s − 3·49-s + 4·53-s − 12·59-s − 6·61-s − 2·67-s − 6·73-s + 2·77-s − 2·79-s + 4·83-s + 8·89-s + 4·91-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.301·11-s + 0.554·13-s − 0.458·19-s + 0.208·23-s − 25-s + 1.85·29-s − 0.718·31-s + 0.328·37-s + 0.312·41-s − 0.304·43-s − 1.16·47-s − 3/7·49-s + 0.549·53-s − 1.56·59-s − 0.768·61-s − 0.244·67-s − 0.702·73-s + 0.227·77-s − 0.225·79-s + 0.439·83-s + 0.847·89-s + 0.419·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36432\)    =    \(2^{4} \cdot 3^{2} \cdot 11 \cdot 23\)
Sign: $-1$
Analytic conductor: \(290.910\)
Root analytic conductor: \(17.0561\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 36432,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.02269530279163, −14.69932833641920, −14.11757270871205, −13.59858916441521, −13.21460679063503, −12.37851551044664, −12.09859373183060, −11.32977285160052, −11.11185706029479, −10.38509257919223, −9.947705728039647, −9.178586436086536, −8.754686442720321, −8.096731314194565, −7.770075203766857, −7.003012824189060, −6.307365410695691, −5.987940319393547, −5.071602096192863, −4.640408890596989, −3.996493570751001, −3.303686991832380, −2.549173550531379, −1.706208051304225, −1.165326244160833, 0, 1.165326244160833, 1.706208051304225, 2.549173550531379, 3.303686991832380, 3.996493570751001, 4.640408890596989, 5.071602096192863, 5.987940319393547, 6.307365410695691, 7.003012824189060, 7.770075203766857, 8.096731314194565, 8.754686442720321, 9.178586436086536, 9.947705728039647, 10.38509257919223, 11.11185706029479, 11.32977285160052, 12.09859373183060, 12.37851551044664, 13.21460679063503, 13.59858916441521, 14.11757270871205, 14.69932833641920, 15.02269530279163

Graph of the $Z$-function along the critical line