Properties

Label 2-3610-1.1-c1-0-108
Degree $2$
Conductor $3610$
Sign $-1$
Analytic cond. $28.8259$
Root an. cond. $5.36898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 7-s + 8-s − 2·9-s − 10-s + 12-s + 3·13-s − 14-s − 15-s + 16-s − 7·17-s − 2·18-s − 20-s − 21-s − 5·23-s + 24-s + 25-s + 3·26-s − 5·27-s − 28-s + 5·29-s − 30-s − 10·31-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.288·12-s + 0.832·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 1.69·17-s − 0.471·18-s − 0.223·20-s − 0.218·21-s − 1.04·23-s + 0.204·24-s + 1/5·25-s + 0.588·26-s − 0.962·27-s − 0.188·28-s + 0.928·29-s − 0.182·30-s − 1.79·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3610\)    =    \(2 \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(28.8259\)
Root analytic conductor: \(5.36898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3610,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 7 T + p T^{2} \) 1.17.h
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.191868264089508253256338295144, −7.44535643802257450278537419964, −6.51993119387254589452561824735, −6.04316355352539573674489533411, −5.05715563726441276240225133967, −4.12437728160403676428154736833, −3.55039547730181048275638828106, −2.70581739593662064650976028533, −1.81036261835437996152074082764, 0, 1.81036261835437996152074082764, 2.70581739593662064650976028533, 3.55039547730181048275638828106, 4.12437728160403676428154736833, 5.05715563726441276240225133967, 6.04316355352539573674489533411, 6.51993119387254589452561824735, 7.44535643802257450278537419964, 8.191868264089508253256338295144

Graph of the $Z$-function along the critical line