L(s) = 1 | + 5-s − 4·11-s + 2·13-s + 2·17-s − 4·19-s + 25-s + 10·29-s + 6·37-s − 6·41-s + 4·43-s + 8·47-s − 6·53-s − 4·55-s + 4·59-s + 10·61-s + 2·65-s − 4·67-s − 16·71-s + 14·73-s − 8·79-s + 4·83-s + 2·85-s + 10·89-s − 4·95-s − 10·97-s + 101-s + 103-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.20·11-s + 0.554·13-s + 0.485·17-s − 0.917·19-s + 1/5·25-s + 1.85·29-s + 0.986·37-s − 0.937·41-s + 0.609·43-s + 1.16·47-s − 0.824·53-s − 0.539·55-s + 0.520·59-s + 1.28·61-s + 0.248·65-s − 0.488·67-s − 1.89·71-s + 1.63·73-s − 0.900·79-s + 0.439·83-s + 0.216·85-s + 1.05·89-s − 0.410·95-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.290414788\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.290414788\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 10 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 16 T + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.95645058054208, −14.38986133742240, −13.78424154766915, −13.44923575126419, −12.79939557681492, −12.48316015439512, −11.79647464403792, −11.14811566094233, −10.60054143749968, −10.19653068235252, −9.781628493364061, −8.896451967387262, −8.525777851826983, −7.949488567324191, −7.404244709463908, −6.611323457435462, −6.163854782966423, −5.560176619335859, −4.945022929911820, −4.369639642345230, −3.597462918791808, −2.751496774660772, −2.390997463964714, −1.409323173761413, −0.5803230790800490,
0.5803230790800490, 1.409323173761413, 2.390997463964714, 2.751496774660772, 3.597462918791808, 4.369639642345230, 4.945022929911820, 5.560176619335859, 6.163854782966423, 6.611323457435462, 7.404244709463908, 7.949488567324191, 8.525777851826983, 8.896451967387262, 9.781628493364061, 10.19653068235252, 10.60054143749968, 11.14811566094233, 11.79647464403792, 12.48316015439512, 12.79939557681492, 13.44923575126419, 13.78424154766915, 14.38986133742240, 14.95645058054208