Properties

Label 2-346800-1.1-c1-0-63
Degree $2$
Conductor $346800$
Sign $1$
Analytic cond. $2769.21$
Root an. cond. $52.6233$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s + 6·13-s − 2·21-s − 6·23-s − 27-s − 6·29-s + 10·31-s + 2·37-s − 6·39-s − 4·43-s + 8·47-s − 3·49-s − 6·53-s − 10·61-s + 2·63-s + 8·67-s + 6·69-s + 10·71-s − 16·73-s − 6·79-s + 81-s + 16·83-s + 6·87-s + 10·89-s + 12·91-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s + 1.66·13-s − 0.436·21-s − 1.25·23-s − 0.192·27-s − 1.11·29-s + 1.79·31-s + 0.328·37-s − 0.960·39-s − 0.609·43-s + 1.16·47-s − 3/7·49-s − 0.824·53-s − 1.28·61-s + 0.251·63-s + 0.977·67-s + 0.722·69-s + 1.18·71-s − 1.87·73-s − 0.675·79-s + 1/9·81-s + 1.75·83-s + 0.643·87-s + 1.05·89-s + 1.25·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 346800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 346800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(346800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2769.21\)
Root analytic conductor: \(52.6233\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 346800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.326676685\)
\(L(\frac12)\) \(\approx\) \(2.326676685\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.39205749332233, −12.02141725243228, −11.63387081296042, −11.22388489470906, −10.74322420573001, −10.50453242390447, −9.878715280685907, −9.383231523090806, −8.906377173379826, −8.312593575037965, −7.945674728637867, −7.698091671189950, −6.854350495161620, −6.386173515160358, −6.102399109635174, −5.543478024400554, −5.116400689544692, −4.397349514870138, −4.141805860782095, −3.557254963313489, −2.948767114582677, −2.173335501515473, −1.602039518059283, −1.163634993839782, −0.4393577685801234, 0.4393577685801234, 1.163634993839782, 1.602039518059283, 2.173335501515473, 2.948767114582677, 3.557254963313489, 4.141805860782095, 4.397349514870138, 5.116400689544692, 5.543478024400554, 6.102399109635174, 6.386173515160358, 6.854350495161620, 7.698091671189950, 7.945674728637867, 8.312593575037965, 8.906377173379826, 9.383231523090806, 9.878715280685907, 10.50453242390447, 10.74322420573001, 11.22388489470906, 11.63387081296042, 12.02141725243228, 12.39205749332233

Graph of the $Z$-function along the critical line