L(s) = 1 | + 3-s + 5-s − 2·7-s + 9-s − 2·13-s + 15-s − 6·17-s − 2·21-s − 6·23-s + 25-s + 27-s + 4·29-s − 2·35-s − 10·37-s − 2·39-s − 8·41-s + 2·43-s + 45-s + 2·47-s − 3·49-s − 6·51-s + 2·53-s − 14·61-s − 2·63-s − 2·65-s + 4·67-s − 6·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.554·13-s + 0.258·15-s − 1.45·17-s − 0.436·21-s − 1.25·23-s + 1/5·25-s + 0.192·27-s + 0.742·29-s − 0.338·35-s − 1.64·37-s − 0.320·39-s − 1.24·41-s + 0.304·43-s + 0.149·45-s + 0.291·47-s − 3/7·49-s − 0.840·51-s + 0.274·53-s − 1.79·61-s − 0.251·63-s − 0.248·65-s + 0.488·67-s − 0.722·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3986694814\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3986694814\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 19 | \( 1 \) |
good | 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 - 4 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 8 T + p T^{2} \) |
| 43 | \( 1 - 2 T + p T^{2} \) |
| 47 | \( 1 - 2 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 2 T + p T^{2} \) |
| 89 | \( 1 + 8 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.49218705604244, −12.23149272142705, −11.80519131514449, −11.12491777692652, −10.51496845793870, −10.35351359812800, −9.720002223593001, −9.428881235594453, −8.961706502707792, −8.349598966973214, −8.242282800928397, −7.293979076098523, −7.086746076535551, −6.506348706182292, −6.164045387674838, −5.593655231785976, −4.873180405719020, −4.570225213902294, −3.919774679006808, −3.379042399323721, −2.909557910139222, −2.241300461890812, −1.951955070238437, −1.232453499924457, −0.1494866429404325,
0.1494866429404325, 1.232453499924457, 1.951955070238437, 2.241300461890812, 2.909557910139222, 3.379042399323721, 3.919774679006808, 4.570225213902294, 4.873180405719020, 5.593655231785976, 6.164045387674838, 6.506348706182292, 7.086746076535551, 7.293979076098523, 8.242282800928397, 8.349598966973214, 8.961706502707792, 9.428881235594453, 9.720002223593001, 10.35351359812800, 10.51496845793870, 11.12491777692652, 11.80519131514449, 12.23149272142705, 12.49218705604244