Properties

Label 2-338130-1.1-c1-0-90
Degree $2$
Conductor $338130$
Sign $-1$
Analytic cond. $2699.98$
Root an. cond. $51.9613$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s + 3·11-s − 13-s − 2·14-s + 16-s + 5·19-s + 20-s − 3·22-s − 5·23-s + 25-s + 26-s + 2·28-s + 9·29-s + 31-s − 32-s + 2·35-s + 7·37-s − 5·38-s − 40-s + 6·41-s − 11·43-s + 3·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s + 0.904·11-s − 0.277·13-s − 0.534·14-s + 1/4·16-s + 1.14·19-s + 0.223·20-s − 0.639·22-s − 1.04·23-s + 1/5·25-s + 0.196·26-s + 0.377·28-s + 1.67·29-s + 0.179·31-s − 0.176·32-s + 0.338·35-s + 1.15·37-s − 0.811·38-s − 0.158·40-s + 0.937·41-s − 1.67·43-s + 0.452·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338130\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2699.98\)
Root analytic conductor: \(51.9613\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338130,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 + 17 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62997991749889, −12.16867278951188, −11.87687024298948, −11.40106756881210, −11.02498088564317, −10.47240051138808, −9.954079485610123, −9.529581052534995, −9.391864837579763, −8.596339867897831, −8.248912865645878, −7.840683669062147, −7.397570837432119, −6.725705676909041, −6.378226075017711, −5.944927731770853, −5.315826183548159, −4.761139481794497, −4.365110748187140, −3.694308302124359, −2.927105645922224, −2.667309149615483, −1.744479738183631, −1.449229765265510, −0.9103767188514755, 0, 0.9103767188514755, 1.449229765265510, 1.744479738183631, 2.667309149615483, 2.927105645922224, 3.694308302124359, 4.365110748187140, 4.761139481794497, 5.315826183548159, 5.944927731770853, 6.378226075017711, 6.725705676909041, 7.397570837432119, 7.840683669062147, 8.248912865645878, 8.596339867897831, 9.391864837579763, 9.529581052534995, 9.954079485610123, 10.47240051138808, 11.02498088564317, 11.40106756881210, 11.87687024298948, 12.16867278951188, 12.62997991749889

Graph of the $Z$-function along the critical line