Properties

Label 2-33813-1.1-c1-0-15
Degree $2$
Conductor $33813$
Sign $-1$
Analytic cond. $269.998$
Root an. cond. $16.4316$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 2·5-s + 4·7-s + 3·8-s − 2·10-s + 4·11-s + 13-s − 4·14-s − 16-s − 2·20-s − 4·22-s − 25-s − 26-s − 4·28-s − 10·29-s − 4·31-s − 5·32-s + 8·35-s + 2·37-s + 6·40-s + 6·41-s − 12·43-s − 4·44-s + 9·49-s + 50-s − 52-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.894·5-s + 1.51·7-s + 1.06·8-s − 0.632·10-s + 1.20·11-s + 0.277·13-s − 1.06·14-s − 1/4·16-s − 0.447·20-s − 0.852·22-s − 1/5·25-s − 0.196·26-s − 0.755·28-s − 1.85·29-s − 0.718·31-s − 0.883·32-s + 1.35·35-s + 0.328·37-s + 0.948·40-s + 0.937·41-s − 1.82·43-s − 0.603·44-s + 9/7·49-s + 0.141·50-s − 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33813 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33813 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33813\)    =    \(3^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(269.998\)
Root analytic conductor: \(16.4316\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33813,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93441868132861, −14.76647738807600, −14.04845283810508, −13.94772862957693, −13.15013456545629, −12.81650213657699, −11.89815628874318, −11.36365747440349, −11.04537080962114, −10.37247107783774, −9.781665111199090, −9.246257267401265, −8.939422620322604, −8.359222387520320, −7.658012349342836, −7.388877434190904, −6.440168701364685, −5.829166746385923, −5.260036695576759, −4.639001517494773, −4.081972392265009, −3.413798564485953, −2.150610364764650, −1.554213474926212, −1.313969994476919, 0, 1.313969994476919, 1.554213474926212, 2.150610364764650, 3.413798564485953, 4.081972392265009, 4.639001517494773, 5.260036695576759, 5.829166746385923, 6.440168701364685, 7.388877434190904, 7.658012349342836, 8.359222387520320, 8.939422620322604, 9.246257267401265, 9.781665111199090, 10.37247107783774, 11.04537080962114, 11.36365747440349, 11.89815628874318, 12.81650213657699, 13.15013456545629, 13.94772862957693, 14.04845283810508, 14.76647738807600, 14.93441868132861

Graph of the $Z$-function along the critical line