Properties

Degree 2
Conductor $ 2^{3} \cdot 5^{2} \cdot 13^{2} $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 3·9-s − 4·11-s − 2·17-s − 4·19-s − 4·23-s − 2·29-s + 8·31-s + 6·37-s + 6·41-s + 8·43-s + 4·47-s + 9·49-s − 6·53-s + 4·59-s − 2·61-s + 12·63-s + 8·67-s − 6·73-s + 16·77-s + 9·81-s − 16·83-s + 6·89-s − 14·97-s + 12·99-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s − 9-s − 1.20·11-s − 0.485·17-s − 0.917·19-s − 0.834·23-s − 0.371·29-s + 1.43·31-s + 0.986·37-s + 0.937·41-s + 1.21·43-s + 0.583·47-s + 9/7·49-s − 0.824·53-s + 0.520·59-s − 0.256·61-s + 1.51·63-s + 0.977·67-s − 0.702·73-s + 1.82·77-s + 81-s − 1.75·83-s + 0.635·89-s − 1.42·97-s + 1.20·99-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(33800\)    =    \(2^{3} \cdot 5^{2} \cdot 13^{2}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{33800} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 33800,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;5,\;13\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;5,\;13\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−15.41127085129890, −14.69360779745897, −14.20086109157336, −13.52170047088477, −13.18821723267227, −12.67232053138413, −12.22730680311125, −11.56041400781476, −10.81910281708747, −10.61211183248476, −9.788223634476346, −9.495284983176592, −8.802038587824591, −8.178452508850007, −7.803024023019202, −6.930162063640324, −6.415848435955611, −5.835896070407188, −5.538993208667616, −4.455895332181078, −4.056153107070077, −3.040775098952506, −2.722204817342846, −2.144418760489661, −0.6782356452631576, 0, 0.6782356452631576, 2.144418760489661, 2.722204817342846, 3.040775098952506, 4.056153107070077, 4.455895332181078, 5.538993208667616, 5.835896070407188, 6.415848435955611, 6.930162063640324, 7.803024023019202, 8.178452508850007, 8.802038587824591, 9.495284983176592, 9.788223634476346, 10.61211183248476, 10.81910281708747, 11.56041400781476, 12.22730680311125, 12.67232053138413, 13.18821723267227, 13.52170047088477, 14.20086109157336, 14.69360779745897, 15.41127085129890

Graph of the $Z$-function along the critical line