Properties

Label 2-33800-1.1-c1-0-5
Degree $2$
Conductor $33800$
Sign $1$
Analytic cond. $269.894$
Root an. cond. $16.4284$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·7-s + 9-s − 5·11-s + 2·17-s + 5·19-s + 6·21-s + 8·23-s + 4·27-s + 8·31-s + 10·33-s + 9·37-s − 2·41-s + 6·43-s + 7·47-s + 2·49-s − 4·51-s + 13·53-s − 10·57-s + 4·61-s − 3·63-s − 16·69-s + 14·71-s − 10·73-s + 15·77-s − 4·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.13·7-s + 1/3·9-s − 1.50·11-s + 0.485·17-s + 1.14·19-s + 1.30·21-s + 1.66·23-s + 0.769·27-s + 1.43·31-s + 1.74·33-s + 1.47·37-s − 0.312·41-s + 0.914·43-s + 1.02·47-s + 2/7·49-s − 0.560·51-s + 1.78·53-s − 1.32·57-s + 0.512·61-s − 0.377·63-s − 1.92·69-s + 1.66·71-s − 1.17·73-s + 1.70·77-s − 0.450·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33800\)    =    \(2^{3} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(269.894\)
Root analytic conductor: \(16.4284\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.325810586\)
\(L(\frac12)\) \(\approx\) \(1.325810586\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 9 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 13 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 18 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.20378898822068, −14.51751467914804, −13.69900006505867, −13.29984447040798, −12.90602535405686, −12.25832720051446, −11.91951198679062, −11.22132241152717, −10.77238812750902, −10.25004088731410, −9.803665729341110, −9.229434526983790, −8.514312871357325, −7.783993672825785, −7.266878088201094, −6.697931931471017, −6.059204241377008, −5.566743426324460, −5.121672685263034, −4.538673338550656, −3.551067052852086, −2.849846696890096, −2.516179296298610, −0.9012542764285991, −0.6402571008105719, 0.6402571008105719, 0.9012542764285991, 2.516179296298610, 2.849846696890096, 3.551067052852086, 4.538673338550656, 5.121672685263034, 5.566743426324460, 6.059204241377008, 6.697931931471017, 7.266878088201094, 7.783993672825785, 8.514312871357325, 9.229434526983790, 9.803665729341110, 10.25004088731410, 10.77238812750902, 11.22132241152717, 11.91951198679062, 12.25832720051446, 12.90602535405686, 13.29984447040798, 13.69900006505867, 14.51751467914804, 15.20378898822068

Graph of the $Z$-function along the critical line