Properties

Label 2-33640-1.1-c1-0-4
Degree $2$
Conductor $33640$
Sign $1$
Analytic cond. $268.616$
Root an. cond. $16.3895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 9-s − 2·11-s + 2·13-s − 2·15-s + 4·17-s + 6·19-s + 8·23-s + 25-s − 4·27-s + 10·31-s − 4·33-s + 8·37-s + 4·39-s + 2·43-s − 45-s − 6·47-s − 7·49-s + 8·51-s + 6·53-s + 2·55-s + 12·57-s + 4·59-s − 12·61-s − 2·65-s − 4·67-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1/3·9-s − 0.603·11-s + 0.554·13-s − 0.516·15-s + 0.970·17-s + 1.37·19-s + 1.66·23-s + 1/5·25-s − 0.769·27-s + 1.79·31-s − 0.696·33-s + 1.31·37-s + 0.640·39-s + 0.304·43-s − 0.149·45-s − 0.875·47-s − 49-s + 1.12·51-s + 0.824·53-s + 0.269·55-s + 1.58·57-s + 0.520·59-s − 1.53·61-s − 0.248·65-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33640\)    =    \(2^{3} \cdot 5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(268.616\)
Root analytic conductor: \(16.3895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.009182558\)
\(L(\frac12)\) \(\approx\) \(4.009182558\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01452303875633, −14.50198920056718, −13.93649449995628, −13.41652932242239, −13.18450854370768, −12.34400773316486, −11.89267967078454, −11.24113135078031, −10.81344991981626, −10.04145442651034, −9.466569369208585, −9.179179671055032, −8.343042792855262, −7.904422035169885, −7.739102820780444, −6.873517497638462, −6.288383767542329, −5.368279635390929, −5.010157895157111, −4.128282726361447, −3.434454759636040, −2.950736974384013, −2.574203108534329, −1.377146696436343, −0.7674892640674869, 0.7674892640674869, 1.377146696436343, 2.574203108534329, 2.950736974384013, 3.434454759636040, 4.128282726361447, 5.010157895157111, 5.368279635390929, 6.288383767542329, 6.873517497638462, 7.739102820780444, 7.904422035169885, 8.343042792855262, 9.179179671055032, 9.466569369208585, 10.04145442651034, 10.81344991981626, 11.24113135078031, 11.89267967078454, 12.34400773316486, 13.18450854370768, 13.41652932242239, 13.93649449995628, 14.50198920056718, 15.01452303875633

Graph of the $Z$-function along the critical line