Properties

Label 2-31680-1.1-c1-0-50
Degree $2$
Conductor $31680$
Sign $1$
Analytic cond. $252.966$
Root an. cond. $15.9049$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s + 11-s + 6·13-s + 2·17-s + 4·19-s + 8·23-s + 25-s + 6·29-s − 4·35-s + 2·37-s − 2·41-s + 8·43-s + 9·49-s − 2·53-s + 55-s + 4·59-s + 10·61-s + 6·65-s − 12·67-s + 16·71-s + 6·73-s − 4·77-s + 8·79-s − 16·83-s + 2·85-s − 10·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s + 0.301·11-s + 1.66·13-s + 0.485·17-s + 0.917·19-s + 1.66·23-s + 1/5·25-s + 1.11·29-s − 0.676·35-s + 0.328·37-s − 0.312·41-s + 1.21·43-s + 9/7·49-s − 0.274·53-s + 0.134·55-s + 0.520·59-s + 1.28·61-s + 0.744·65-s − 1.46·67-s + 1.89·71-s + 0.702·73-s − 0.455·77-s + 0.900·79-s − 1.75·83-s + 0.216·85-s − 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31680\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(252.966\)
Root analytic conductor: \(15.9049\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 31680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.059573806\)
\(L(\frac12)\) \(\approx\) \(3.059573806\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.30144491341366, −14.33444960028435, −13.99962330296184, −13.41207298690456, −13.00968367773402, −12.58545191971236, −11.96399366138692, −11.20006470249082, −10.88874327897773, −10.04916143409167, −9.795536788311718, −9.072857317951304, −8.791295538500504, −8.060678024868615, −7.190683856424267, −6.756699376688373, −6.207535569103129, −5.753861387498853, −5.097987651159412, −4.221050171657134, −3.395111791508250, −3.206570881444579, −2.381808575325427, −1.171591738456993, −0.8002616240078163, 0.8002616240078163, 1.171591738456993, 2.381808575325427, 3.206570881444579, 3.395111791508250, 4.221050171657134, 5.097987651159412, 5.753861387498853, 6.207535569103129, 6.756699376688373, 7.190683856424267, 8.060678024868615, 8.791295538500504, 9.072857317951304, 9.795536788311718, 10.04916143409167, 10.88874327897773, 11.20006470249082, 11.96399366138692, 12.58545191971236, 13.00968367773402, 13.41207298690456, 13.99962330296184, 14.33444960028435, 15.30144491341366

Graph of the $Z$-function along the critical line