Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 2·11-s + 13-s − 14-s + 16-s + 3·17-s − 2·22-s − 23-s + 26-s − 28-s + 5·29-s + 7·31-s + 32-s + 3·34-s + 2·37-s − 7·41-s + 11·43-s − 2·44-s − 46-s + 8·47-s + 49-s + 52-s − 53-s − 56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 0.603·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.727·17-s − 0.426·22-s − 0.208·23-s + 0.196·26-s − 0.188·28-s + 0.928·29-s + 1.25·31-s + 0.176·32-s + 0.514·34-s + 0.328·37-s − 1.09·41-s + 1.67·43-s − 0.301·44-s − 0.147·46-s + 1.16·47-s + 1/7·49-s + 0.138·52-s − 0.137·53-s − 0.133·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $2.868416307$
$L(\frac12)$  $\approx$  $2.868416307$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 7 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + T + p T^{2} \)
59 \( 1 - 5 T + p T^{2} \)
61 \( 1 + 3 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.80222444654328, −17.84080099414806, −17.25617210865841, −16.50877844755343, −15.85549239527441, −15.51162503099056, −14.70886219233623, −13.96261380511530, −13.58433365938298, −12.78171330296292, −12.24122523899660, −11.65761043023686, −10.74923695122352, −10.24092605570531, −9.527060386510500, −8.529164641594109, −7.876843071583526, −7.083859898266087, −6.282261166080428, −5.646967715270817, −4.825212970616644, −3.994234359668351, −3.097395559591048, −2.348014177572476, −0.9371531277369839, 0.9371531277369839, 2.348014177572476, 3.097395559591048, 3.994234359668351, 4.825212970616644, 5.646967715270817, 6.282261166080428, 7.083859898266087, 7.876843071583526, 8.529164641594109, 9.527060386510500, 10.24092605570531, 10.74923695122352, 11.65761043023686, 12.24122523899660, 12.78171330296292, 13.58433365938298, 13.96261380511530, 14.70886219233623, 15.51162503099056, 15.85549239527441, 16.50877844755343, 17.25617210865841, 17.84080099414806, 18.80222444654328

Graph of the $Z$-function along the critical line