Properties

Label 2-305552-1.1-c1-0-13
Degree $2$
Conductor $305552$
Sign $-1$
Analytic cond. $2439.84$
Root an. cond. $49.3947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 5·7-s − 2·9-s + 6·11-s + 15-s − 5·17-s + 2·19-s − 5·21-s − 2·23-s − 4·25-s − 5·27-s − 8·31-s + 6·33-s − 5·35-s + 5·37-s + 2·41-s + 3·43-s − 2·45-s − 3·47-s + 18·49-s − 5·51-s − 10·53-s + 6·55-s + 2·57-s − 8·59-s − 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.88·7-s − 2/3·9-s + 1.80·11-s + 0.258·15-s − 1.21·17-s + 0.458·19-s − 1.09·21-s − 0.417·23-s − 4/5·25-s − 0.962·27-s − 1.43·31-s + 1.04·33-s − 0.845·35-s + 0.821·37-s + 0.312·41-s + 0.457·43-s − 0.298·45-s − 0.437·47-s + 18/7·49-s − 0.700·51-s − 1.37·53-s + 0.809·55-s + 0.264·57-s − 1.04·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(305552\)    =    \(2^{4} \cdot 13^{2} \cdot 113\)
Sign: $-1$
Analytic conductor: \(2439.84\)
Root analytic conductor: \(49.3947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 305552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
113 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80674114328362, −12.65188664536568, −12.01440089700235, −11.51794425867522, −11.14606933181821, −10.61177757250586, −9.850471053444727, −9.527069408031043, −9.316473559617468, −8.934842565175423, −8.534929822430574, −7.647517247621817, −7.387974149107996, −6.542894121728817, −6.456483688865431, −5.949023522490820, −5.632380962648366, −4.654924367720763, −4.136477765540993, −3.582720176949889, −3.319113778926491, −2.724740843260852, −2.072803796353547, −1.635517903280001, −0.6502545822936474, 0, 0.6502545822936474, 1.635517903280001, 2.072803796353547, 2.724740843260852, 3.319113778926491, 3.582720176949889, 4.136477765540993, 4.654924367720763, 5.632380962648366, 5.949023522490820, 6.456483688865431, 6.542894121728817, 7.387974149107996, 7.647517247621817, 8.534929822430574, 8.934842565175423, 9.316473559617468, 9.527069408031043, 9.850471053444727, 10.61177757250586, 11.14606933181821, 11.51794425867522, 12.01440089700235, 12.65188664536568, 12.80674114328362

Graph of the $Z$-function along the critical line