Properties

Label 2-305552-1.1-c1-0-18
Degree $2$
Conductor $305552$
Sign $-1$
Analytic cond. $2439.84$
Root an. cond. $49.3947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s + 4·7-s − 2·9-s − 2·11-s − 4·15-s + 3·19-s − 4·21-s + 11·25-s + 5·27-s + 2·33-s + 16·35-s − 10·37-s − 5·41-s + 7·43-s − 8·45-s − 7·47-s + 9·49-s − 7·53-s − 8·55-s − 3·57-s − 5·59-s − 2·61-s − 8·63-s − 12·67-s + 3·71-s − 6·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s + 1.51·7-s − 2/3·9-s − 0.603·11-s − 1.03·15-s + 0.688·19-s − 0.872·21-s + 11/5·25-s + 0.962·27-s + 0.348·33-s + 2.70·35-s − 1.64·37-s − 0.780·41-s + 1.06·43-s − 1.19·45-s − 1.02·47-s + 9/7·49-s − 0.961·53-s − 1.07·55-s − 0.397·57-s − 0.650·59-s − 0.256·61-s − 1.00·63-s − 1.46·67-s + 0.356·71-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(305552\)    =    \(2^{4} \cdot 13^{2} \cdot 113\)
Sign: $-1$
Analytic conductor: \(2439.84\)
Root analytic conductor: \(49.3947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 305552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
113 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.91950616960659, −12.37207721211013, −11.94436579657537, −11.52847419056051, −10.83297505022084, −10.77673686760254, −10.27200549389267, −9.774877128513433, −9.137864841320945, −8.894124276105964, −8.293087733861065, −7.847912202315359, −7.322948973235299, −6.660511850150944, −6.210568440333636, −5.756706437503868, −5.290985373303852, −4.948173067541256, −4.765740706244828, −3.751523475468951, −2.970074733210251, −2.621370270970595, −1.802520809552836, −1.635624571912916, −0.9336147425640634, 0, 0.9336147425640634, 1.635624571912916, 1.802520809552836, 2.621370270970595, 2.970074733210251, 3.751523475468951, 4.765740706244828, 4.948173067541256, 5.290985373303852, 5.756706437503868, 6.210568440333636, 6.660511850150944, 7.322948973235299, 7.847912202315359, 8.293087733861065, 8.894124276105964, 9.137864841320945, 9.774877128513433, 10.27200549389267, 10.77673686760254, 10.83297505022084, 11.52847419056051, 11.94436579657537, 12.37207721211013, 12.91950616960659

Graph of the $Z$-function along the critical line