Properties

Label 2-305552-1.1-c1-0-7
Degree $2$
Conductor $305552$
Sign $-1$
Analytic cond. $2439.84$
Root an. cond. $49.3947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 3·7-s − 2·9-s + 2·11-s − 15-s − 5·17-s − 2·19-s + 3·21-s − 4·23-s − 4·25-s + 5·27-s + 2·29-s + 8·31-s − 2·33-s − 3·35-s − 7·37-s − 6·41-s − 3·43-s − 2·45-s − 9·47-s + 2·49-s + 5·51-s + 10·53-s + 2·55-s + 2·57-s − 6·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.13·7-s − 2/3·9-s + 0.603·11-s − 0.258·15-s − 1.21·17-s − 0.458·19-s + 0.654·21-s − 0.834·23-s − 4/5·25-s + 0.962·27-s + 0.371·29-s + 1.43·31-s − 0.348·33-s − 0.507·35-s − 1.15·37-s − 0.937·41-s − 0.457·43-s − 0.298·45-s − 1.31·47-s + 2/7·49-s + 0.700·51-s + 1.37·53-s + 0.269·55-s + 0.264·57-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(305552\)    =    \(2^{4} \cdot 13^{2} \cdot 113\)
Sign: $-1$
Analytic conductor: \(2439.84\)
Root analytic conductor: \(49.3947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 305552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
113 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 11 T + p T^{2} \) 1.71.l
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98574649335703, −12.25177910048144, −11.95713639747309, −11.68336600462306, −11.11769577601418, −10.52090022755463, −10.06365556656971, −9.945726049724417, −9.114700449118682, −8.876756732764579, −8.391339519602905, −7.874887266253414, −7.053007823285057, −6.650187587431546, −6.256795857442910, −6.088198703328172, −5.421489089381776, −4.848943620841966, −4.322170434269072, −3.802120890793931, −3.095680884989014, −2.771755675284175, −1.974289005500141, −1.535472049667190, −0.4915373596385580, 0, 0.4915373596385580, 1.535472049667190, 1.974289005500141, 2.771755675284175, 3.095680884989014, 3.802120890793931, 4.322170434269072, 4.848943620841966, 5.421489089381776, 6.088198703328172, 6.256795857442910, 6.650187587431546, 7.053007823285057, 7.874887266253414, 8.391339519602905, 8.876756732764579, 9.114700449118682, 9.945726049724417, 10.06365556656971, 10.52090022755463, 11.11769577601418, 11.68336600462306, 11.95713639747309, 12.25177910048144, 12.98574649335703

Graph of the $Z$-function along the critical line