Properties

Label 2-305552-1.1-c1-0-9
Degree $2$
Conductor $305552$
Sign $-1$
Analytic cond. $2439.84$
Root an. cond. $49.3947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s + 4·15-s − 6·17-s + 6·19-s + 6·23-s − 25-s + 4·27-s − 6·29-s − 4·31-s − 2·37-s + 2·41-s − 6·43-s − 2·45-s + 6·47-s − 7·49-s + 12·51-s + 10·53-s − 12·57-s + 6·59-s + 6·61-s + 2·67-s − 12·69-s − 6·71-s − 2·73-s + 2·75-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s + 1.03·15-s − 1.45·17-s + 1.37·19-s + 1.25·23-s − 1/5·25-s + 0.769·27-s − 1.11·29-s − 0.718·31-s − 0.328·37-s + 0.312·41-s − 0.914·43-s − 0.298·45-s + 0.875·47-s − 49-s + 1.68·51-s + 1.37·53-s − 1.58·57-s + 0.781·59-s + 0.768·61-s + 0.244·67-s − 1.44·69-s − 0.712·71-s − 0.234·73-s + 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(305552\)    =    \(2^{4} \cdot 13^{2} \cdot 113\)
Sign: $-1$
Analytic conductor: \(2439.84\)
Root analytic conductor: \(49.3947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 305552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
113 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96454228986451, −12.24970178887115, −11.77756478936868, −11.55961689316610, −11.22816044845760, −10.75847677821653, −10.38578923704863, −9.708071203249925, −9.143306119573817, −8.866453125114458, −8.243177254620091, −7.685708870093600, −7.199172356383684, −6.842572770907685, −6.447793499903434, −5.632950570220363, −5.348066413693383, −5.022488591583543, −4.186795750233501, −4.008754683107736, −3.237814958801443, −2.753658440399780, −1.963588476708996, −1.245652348244837, −0.5559637928197737, 0, 0.5559637928197737, 1.245652348244837, 1.963588476708996, 2.753658440399780, 3.237814958801443, 4.008754683107736, 4.186795750233501, 5.022488591583543, 5.348066413693383, 5.632950570220363, 6.447793499903434, 6.842572770907685, 7.199172356383684, 7.685708870093600, 8.243177254620091, 8.866453125114458, 9.143306119573817, 9.708071203249925, 10.38578923704863, 10.75847677821653, 11.22816044845760, 11.55961689316610, 11.77756478936868, 12.24970178887115, 12.96454228986451

Graph of the $Z$-function along the critical line