Properties

Label 2-296208-1.1-c1-0-135
Degree $2$
Conductor $296208$
Sign $-1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 2·7-s + 2·13-s − 17-s + 2·19-s − 4·23-s + 11·25-s + 6·29-s − 4·31-s − 8·35-s + 10·37-s − 6·41-s − 2·43-s − 3·49-s − 12·59-s − 2·61-s + 8·65-s + 8·67-s + 16·71-s − 6·73-s + 6·79-s − 4·83-s − 4·85-s + 16·89-s − 4·91-s + 8·95-s + 2·97-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.755·7-s + 0.554·13-s − 0.242·17-s + 0.458·19-s − 0.834·23-s + 11/5·25-s + 1.11·29-s − 0.718·31-s − 1.35·35-s + 1.64·37-s − 0.937·41-s − 0.304·43-s − 3/7·49-s − 1.56·59-s − 0.256·61-s + 0.992·65-s + 0.977·67-s + 1.89·71-s − 0.702·73-s + 0.675·79-s − 0.439·83-s − 0.433·85-s + 1.69·89-s − 0.419·91-s + 0.820·95-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95634212179416, −12.62724168401747, −12.11676120127574, −11.56438115760145, −10.84006674052445, −10.71029008989589, −9.900547358774403, −9.834536800627501, −9.368125579984020, −8.955705422291595, −8.340346660331871, −7.922256841496118, −7.197713416292788, −6.559492000112381, −6.374820173164829, −5.952815609393356, −5.469602753329807, −4.903755198407096, −4.446215709289932, −3.561613698119022, −3.247577107489766, −2.473758405573544, −2.188415941807788, −1.429309649388086, −0.9684731870951970, 0, 0.9684731870951970, 1.429309649388086, 2.188415941807788, 2.473758405573544, 3.247577107489766, 3.561613698119022, 4.446215709289932, 4.903755198407096, 5.469602753329807, 5.952815609393356, 6.374820173164829, 6.559492000112381, 7.197713416292788, 7.922256841496118, 8.340346660331871, 8.955705422291595, 9.368125579984020, 9.834536800627501, 9.900547358774403, 10.71029008989589, 10.84006674052445, 11.56438115760145, 12.11676120127574, 12.62724168401747, 12.95634212179416

Graph of the $Z$-function along the critical line