Properties

Label 2-295659-1.1-c1-0-30
Degree $2$
Conductor $295659$
Sign $-1$
Analytic cond. $2360.84$
Root an. cond. $48.5885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 7-s − 3·8-s + 13-s − 14-s − 16-s + 2·17-s + 6·23-s − 5·25-s + 26-s + 28-s + 4·29-s + 5·32-s + 2·34-s + 10·37-s − 12·41-s − 4·43-s + 6·46-s − 10·47-s + 49-s − 5·50-s − 52-s + 12·53-s + 3·56-s + 4·58-s + 14·59-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.377·7-s − 1.06·8-s + 0.277·13-s − 0.267·14-s − 1/4·16-s + 0.485·17-s + 1.25·23-s − 25-s + 0.196·26-s + 0.188·28-s + 0.742·29-s + 0.883·32-s + 0.342·34-s + 1.64·37-s − 1.87·41-s − 0.609·43-s + 0.884·46-s − 1.45·47-s + 1/7·49-s − 0.707·50-s − 0.138·52-s + 1.64·53-s + 0.400·56-s + 0.525·58-s + 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(295659\)    =    \(3^{2} \cdot 7 \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2360.84\)
Root analytic conductor: \(48.5885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 295659,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
19 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09622705507853, −12.57546968814933, −12.04385203571866, −11.61800239410757, −11.38872617486157, −10.54805729965146, −10.14749770847562, −9.686026851805099, −9.367145694700037, −8.650500780075675, −8.430088961610430, −7.899385836491729, −7.225107090305247, −6.691047404185802, −6.332988833353971, −5.673220353257433, −5.376066157154062, −4.812943482087767, −4.309649989900497, −3.828568198683671, −3.199216780549903, −2.973237498759401, −2.211269547599218, −1.382447722568094, −0.7524230009224282, 0, 0.7524230009224282, 1.382447722568094, 2.211269547599218, 2.973237498759401, 3.199216780549903, 3.828568198683671, 4.309649989900497, 4.812943482087767, 5.376066157154062, 5.673220353257433, 6.332988833353971, 6.691047404185802, 7.225107090305247, 7.899385836491729, 8.430088961610430, 8.650500780075675, 9.367145694700037, 9.686026851805099, 10.14749770847562, 10.54805729965146, 11.38872617486157, 11.61800239410757, 12.04385203571866, 12.57546968814933, 13.09622705507853

Graph of the $Z$-function along the critical line