Properties

Label 2-286650-1.1-c1-0-13
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 6·11-s + 13-s + 16-s + 3·17-s − 2·19-s + 6·22-s − 26-s − 6·29-s + 4·31-s − 32-s − 3·34-s + 7·37-s + 2·38-s + 43-s − 6·44-s − 3·47-s + 52-s + 6·58-s − 6·59-s − 8·61-s − 4·62-s + 64-s − 14·67-s + 3·68-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 1.80·11-s + 0.277·13-s + 1/4·16-s + 0.727·17-s − 0.458·19-s + 1.27·22-s − 0.196·26-s − 1.11·29-s + 0.718·31-s − 0.176·32-s − 0.514·34-s + 1.15·37-s + 0.324·38-s + 0.152·43-s − 0.904·44-s − 0.437·47-s + 0.138·52-s + 0.787·58-s − 0.781·59-s − 1.02·61-s − 0.508·62-s + 1/8·64-s − 1.71·67-s + 0.363·68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4528361624\)
\(L(\frac12)\) \(\approx\) \(0.4528361624\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86245939797886, −12.20207245103713, −11.78497345938778, −11.18260924557661, −10.77306052928358, −10.47984262588858, −10.00820439046329, −9.461365791700782, −9.163241432846129, −8.405411336728777, −8.045081173822213, −7.755169566508523, −7.309873321653619, −6.681562422327613, −6.106782368398046, −5.646939379279990, −5.275605874634425, −4.569206076632948, −4.104886814066737, −3.253094417791877, −2.874868445894739, −2.384989281253457, −1.691474395856619, −1.089633830226674, −0.2137988826278011, 0.2137988826278011, 1.089633830226674, 1.691474395856619, 2.384989281253457, 2.874868445894739, 3.253094417791877, 4.104886814066737, 4.569206076632948, 5.275605874634425, 5.646939379279990, 6.106782368398046, 6.681562422327613, 7.309873321653619, 7.755169566508523, 8.045081173822213, 8.405411336728777, 9.163241432846129, 9.461365791700782, 10.00820439046329, 10.47984262588858, 10.77306052928358, 11.18260924557661, 11.78497345938778, 12.20207245103713, 12.86245939797886

Graph of the $Z$-function along the critical line