Properties

Label 2-286110-1.1-c1-0-95
Degree $2$
Conductor $286110$
Sign $-1$
Analytic cond. $2284.59$
Root an. cond. $47.7974$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s − 11-s − 4·13-s − 2·14-s + 16-s − 6·19-s + 20-s + 22-s − 2·23-s + 25-s + 4·26-s + 2·28-s − 6·29-s + 4·31-s − 32-s + 2·35-s + 2·37-s + 6·38-s − 40-s − 6·41-s + 6·43-s − 44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s − 0.301·11-s − 1.10·13-s − 0.534·14-s + 1/4·16-s − 1.37·19-s + 0.223·20-s + 0.213·22-s − 0.417·23-s + 1/5·25-s + 0.784·26-s + 0.377·28-s − 1.11·29-s + 0.718·31-s − 0.176·32-s + 0.338·35-s + 0.328·37-s + 0.973·38-s − 0.158·40-s − 0.937·41-s + 0.914·43-s − 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286110\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2284.59\)
Root analytic conductor: \(47.7974\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 286110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78484165128935, −12.42815682033103, −12.08883622987728, −11.46410374322458, −10.98532531670509, −10.66294225159018, −10.21963829266236, −9.638754540166731, −9.413651810393083, −8.702974802487980, −8.407977036282577, −7.831070785352596, −7.503248595879231, −6.935159757605260, −6.486118491454295, −5.804054502379378, −5.532866127112191, −4.805749577666999, −4.408349953152583, −3.850703436654980, −2.975095858774933, −2.468052155359020, −2.009851151011876, −1.564941844646865, −0.6859697489045103, 0, 0.6859697489045103, 1.564941844646865, 2.009851151011876, 2.468052155359020, 2.975095858774933, 3.850703436654980, 4.408349953152583, 4.805749577666999, 5.532866127112191, 5.804054502379378, 6.486118491454295, 6.935159757605260, 7.503248595879231, 7.831070785352596, 8.407977036282577, 8.702974802487980, 9.413651810393083, 9.638754540166731, 10.21963829266236, 10.66294225159018, 10.98532531670509, 11.46410374322458, 12.08883622987728, 12.42815682033103, 12.78484165128935

Graph of the $Z$-function along the critical line