Properties

Label 2-168e2-1.1-c1-0-147
Degree $2$
Conductor $28224$
Sign $-1$
Analytic cond. $225.369$
Root an. cond. $15.0123$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·11-s − 2·13-s − 6·17-s + 4·19-s − 25-s − 2·29-s − 6·37-s + 2·41-s + 4·43-s + 6·53-s + 8·55-s − 12·59-s − 2·61-s − 4·65-s − 4·67-s + 6·73-s − 16·79-s + 12·83-s − 12·85-s − 14·89-s + 8·95-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.20·11-s − 0.554·13-s − 1.45·17-s + 0.917·19-s − 1/5·25-s − 0.371·29-s − 0.986·37-s + 0.312·41-s + 0.609·43-s + 0.824·53-s + 1.07·55-s − 1.56·59-s − 0.256·61-s − 0.496·65-s − 0.488·67-s + 0.702·73-s − 1.80·79-s + 1.31·83-s − 1.30·85-s − 1.48·89-s + 0.820·95-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28224\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(225.369\)
Root analytic conductor: \(15.0123\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 28224,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.40474512163364, −14.98037475720863, −14.24790277657576, −13.87992466134726, −13.53530837751726, −12.85210438827938, −12.22031343993403, −11.82367352132947, −11.10579274093296, −10.73460473596358, −9.829117951299122, −9.593389441506788, −9.004184177491189, −8.588553744868810, −7.674468523920436, −7.056153072959076, −6.636835957682069, −5.921326102927595, −5.493639945745523, −4.644767471442539, −4.151911355962541, −3.344657252745787, −2.532160496641370, −1.869967830632051, −1.214852225393285, 0, 1.214852225393285, 1.869967830632051, 2.532160496641370, 3.344657252745787, 4.151911355962541, 4.644767471442539, 5.493639945745523, 5.921326102927595, 6.636835957682069, 7.056153072959076, 7.674468523920436, 8.588553744868810, 9.004184177491189, 9.593389441506788, 9.829117951299122, 10.73460473596358, 11.10579274093296, 11.82367352132947, 12.22031343993403, 12.85210438827938, 13.53530837751726, 13.87992466134726, 14.24790277657576, 14.98037475720863, 15.40474512163364

Graph of the $Z$-function along the critical line