Properties

Label 2-27735-1.1-c1-0-1
Degree $2$
Conductor $27735$
Sign $1$
Analytic cond. $221.465$
Root an. cond. $14.8817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s − 5-s − 2·6-s + 4·7-s + 9-s − 2·10-s − 3·11-s − 2·12-s + 5·13-s + 8·14-s + 15-s − 4·16-s − 7·17-s + 2·18-s − 2·20-s − 4·21-s − 6·22-s − 9·23-s + 25-s + 10·26-s − 27-s + 8·28-s + 2·30-s + 7·31-s − 8·32-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s − 0.816·6-s + 1.51·7-s + 1/3·9-s − 0.632·10-s − 0.904·11-s − 0.577·12-s + 1.38·13-s + 2.13·14-s + 0.258·15-s − 16-s − 1.69·17-s + 0.471·18-s − 0.447·20-s − 0.872·21-s − 1.27·22-s − 1.87·23-s + 1/5·25-s + 1.96·26-s − 0.192·27-s + 1.51·28-s + 0.365·30-s + 1.25·31-s − 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27735\)    =    \(3 \cdot 5 \cdot 43^{2}\)
Sign: $1$
Analytic conductor: \(221.465\)
Root analytic conductor: \(14.8817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27735,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.433689181\)
\(L(\frac12)\) \(\approx\) \(3.433689181\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 + T \)
43 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.34503753691967, −14.62323697944602, −14.04385467337440, −13.67835383273171, −13.12391481621238, −12.71622437637488, −11.93979834422841, −11.49218517262294, −11.25027594184443, −10.73933316411502, −10.11092933699955, −9.113528271707296, −8.469331478183816, −8.004992714357532, −7.502435524301712, −6.410041324612984, −6.248686243490987, −5.583048973426164, −4.775728317858799, −4.526156166044958, −4.073067294847146, −3.244365100888598, −2.311870338037015, −1.776223142260624, −0.5762841000079583, 0.5762841000079583, 1.776223142260624, 2.311870338037015, 3.244365100888598, 4.073067294847146, 4.526156166044958, 4.775728317858799, 5.583048973426164, 6.248686243490987, 6.410041324612984, 7.502435524301712, 8.004992714357532, 8.469331478183816, 9.113528271707296, 10.11092933699955, 10.73933316411502, 11.25027594184443, 11.49218517262294, 11.93979834422841, 12.71622437637488, 13.12391481621238, 13.67835383273171, 14.04385467337440, 14.62323697944602, 15.34503753691967

Graph of the $Z$-function along the critical line