L(s) = 1 | − 4·7-s − 4·11-s − 2·13-s − 2·17-s + 19-s − 8·23-s + 6·29-s + 4·31-s − 10·37-s + 2·41-s + 12·43-s + 9·49-s − 6·53-s + 10·61-s − 4·67-s + 8·71-s − 2·73-s + 16·77-s − 12·79-s + 8·83-s − 6·89-s + 8·91-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + ⋯ |
L(s) = 1 | − 1.51·7-s − 1.20·11-s − 0.554·13-s − 0.485·17-s + 0.229·19-s − 1.66·23-s + 1.11·29-s + 0.718·31-s − 1.64·37-s + 0.312·41-s + 1.82·43-s + 9/7·49-s − 0.824·53-s + 1.28·61-s − 0.488·67-s + 0.949·71-s − 0.234·73-s + 1.82·77-s − 1.35·79-s + 0.878·83-s − 0.635·89-s + 0.838·91-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 - 8 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.94624576537306, −12.47324383858811, −12.21694912790529, −11.84179210816458, −10.96934569036533, −10.66804170473876, −10.15687247816081, −9.777625686412279, −9.519429218043576, −8.822784327012924, −8.305052602778699, −7.915718709830974, −7.346354518096051, −6.775245393537437, −6.526342778500794, −5.793958764341156, −5.554206134513491, −4.869814307692713, −4.264434854489880, −3.820701303207493, −3.140746145017620, −2.583834689454918, −2.403554896174243, −1.457431918597241, −0.5071774255541214, 0,
0.5071774255541214, 1.457431918597241, 2.403554896174243, 2.583834689454918, 3.140746145017620, 3.820701303207493, 4.264434854489880, 4.869814307692713, 5.554206134513491, 5.793958764341156, 6.526342778500794, 6.775245393537437, 7.346354518096051, 7.915718709830974, 8.305052602778699, 8.822784327012924, 9.519429218043576, 9.777625686412279, 10.15687247816081, 10.66804170473876, 10.96934569036533, 11.84179210816458, 12.21694912790529, 12.47324383858811, 12.94624576537306