Properties

Label 2-244608-1.1-c1-0-59
Degree $2$
Conductor $244608$
Sign $1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 4·11-s − 13-s + 2·17-s + 4·19-s − 4·23-s − 5·25-s + 27-s + 6·31-s + 4·33-s + 2·37-s − 39-s + 6·41-s + 12·47-s + 2·51-s − 8·53-s + 4·57-s − 12·59-s + 6·61-s − 4·69-s + 12·71-s − 6·73-s − 5·75-s + 14·79-s + 81-s + 4·83-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 1.20·11-s − 0.277·13-s + 0.485·17-s + 0.917·19-s − 0.834·23-s − 25-s + 0.192·27-s + 1.07·31-s + 0.696·33-s + 0.328·37-s − 0.160·39-s + 0.937·41-s + 1.75·47-s + 0.280·51-s − 1.09·53-s + 0.529·57-s − 1.56·59-s + 0.768·61-s − 0.481·69-s + 1.42·71-s − 0.702·73-s − 0.577·75-s + 1.57·79-s + 1/9·81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.662787236\)
\(L(\frac12)\) \(\approx\) \(4.662787236\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87679774585177, −12.25415295373110, −12.00027315946127, −11.66794455691456, −11.03316795119809, −10.48862401088473, −9.938098166304895, −9.585033112169722, −9.173535424858283, −8.811231596321254, −8.009403200160044, −7.724960489863020, −7.432479743841329, −6.609471778241019, −6.247645572510825, −5.815054165217700, −5.099669879543239, −4.555876551973798, −4.004087787422386, −3.591781995367439, −3.066651027262387, −2.337154249014673, −1.893179089603673, −1.112210658924677, −0.6305903110616320, 0.6305903110616320, 1.112210658924677, 1.893179089603673, 2.337154249014673, 3.066651027262387, 3.591781995367439, 4.004087787422386, 4.555876551973798, 5.099669879543239, 5.815054165217700, 6.247645572510825, 6.609471778241019, 7.432479743841329, 7.724960489863020, 8.009403200160044, 8.811231596321254, 9.173535424858283, 9.585033112169722, 9.938098166304895, 10.48862401088473, 11.03316795119809, 11.66794455691456, 12.00027315946127, 12.25415295373110, 12.87679774585177

Graph of the $Z$-function along the critical line