Properties

Label 2-235950-1.1-c1-0-7
Degree $2$
Conductor $235950$
Sign $1$
Analytic cond. $1884.07$
Root an. cond. $43.4058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 12-s − 13-s + 16-s + 2·17-s − 18-s + 4·19-s + 24-s + 26-s − 27-s + 6·29-s − 4·31-s − 32-s − 2·34-s + 36-s − 2·37-s − 4·38-s + 39-s − 6·41-s + 12·47-s − 48-s − 7·49-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.288·12-s − 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s + 0.204·24-s + 0.196·26-s − 0.192·27-s + 1.11·29-s − 0.718·31-s − 0.176·32-s − 0.342·34-s + 1/6·36-s − 0.328·37-s − 0.648·38-s + 0.160·39-s − 0.937·41-s + 1.75·47-s − 0.144·48-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1884.07\)
Root analytic conductor: \(43.4058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8080211595\)
\(L(\frac12)\) \(\approx\) \(0.8080211595\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75316203373731, −12.31927770826153, −11.80632043800223, −11.63189903599059, −11.00300702179160, −10.46135538759754, −10.14809752016963, −9.792047767358828, −9.078663438366822, −8.838719337162829, −8.195114191848943, −7.646298919048027, −7.199328276795278, −6.951223111010271, −6.108996314444867, −5.856739951063005, −5.291945699438314, −4.692381724944221, −4.246279669291642, −3.341463444835233, −3.061118391791803, −2.312208429140190, −1.528552411593940, −1.156967440258089, −0.3121538810961457, 0.3121538810961457, 1.156967440258089, 1.528552411593940, 2.312208429140190, 3.061118391791803, 3.341463444835233, 4.246279669291642, 4.692381724944221, 5.291945699438314, 5.856739951063005, 6.108996314444867, 6.951223111010271, 7.199328276795278, 7.646298919048027, 8.195114191848943, 8.838719337162829, 9.078663438366822, 9.792047767358828, 10.14809752016963, 10.46135538759754, 11.00300702179160, 11.63189903599059, 11.80632043800223, 12.31927770826153, 12.75316203373731

Graph of the $Z$-function along the critical line