Properties

Degree 2
Conductor $ 2^{4} \cdot 5 \cdot 17^{2} $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s − 3·9-s + 4·11-s − 2·13-s − 4·19-s + 4·23-s + 25-s + 2·29-s − 8·31-s + 4·35-s − 6·37-s + 6·41-s + 8·43-s + 3·45-s − 4·47-s + 9·49-s + 6·53-s − 4·55-s + 4·59-s + 2·61-s + 12·63-s + 2·65-s − 8·67-s + 6·73-s − 16·77-s + 9·81-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s − 9-s + 1.20·11-s − 0.554·13-s − 0.917·19-s + 0.834·23-s + 1/5·25-s + 0.371·29-s − 1.43·31-s + 0.676·35-s − 0.986·37-s + 0.937·41-s + 1.21·43-s + 0.447·45-s − 0.583·47-s + 9/7·49-s + 0.824·53-s − 0.539·55-s + 0.520·59-s + 0.256·61-s + 1.51·63-s + 0.248·65-s − 0.977·67-s + 0.702·73-s − 1.82·77-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(23120\)    =    \(2^{4} \cdot 5 \cdot 17^{2}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{23120} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 23120,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;5,\;17\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;5,\;17\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
17 \( 1 \)
good3 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−15.86253796405361, −15.08741973694035, −14.62525326740884, −14.33644511516725, −13.47394066210284, −13.04747033592766, −12.27510481491174, −12.20535541239536, −11.39059962867977, −10.82108014629132, −10.35435207362872, −9.336356716459823, −9.283750828093787, −8.690612552327710, −7.960548736099198, −7.065575017407997, −6.828423941938398, −6.110394766157802, −5.626950574765508, −4.762750768207649, −3.930406922115119, −3.496067195163895, −2.823346163566721, −2.087945802323631, −0.8147489872735478, 0, 0.8147489872735478, 2.087945802323631, 2.823346163566721, 3.496067195163895, 3.930406922115119, 4.762750768207649, 5.626950574765508, 6.110394766157802, 6.828423941938398, 7.065575017407997, 7.960548736099198, 8.690612552327710, 9.283750828093787, 9.336356716459823, 10.35435207362872, 10.82108014629132, 11.39059962867977, 12.20535541239536, 12.27510481491174, 13.04747033592766, 13.47394066210284, 14.33644511516725, 14.62525326740884, 15.08741973694035, 15.86253796405361

Graph of the $Z$-function along the critical line