Properties

Label 2-21840-1.1-c1-0-35
Degree $2$
Conductor $21840$
Sign $-1$
Analytic cond. $174.393$
Root an. cond. $13.2058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s − 4·11-s − 13-s + 15-s + 6·17-s − 8·19-s − 21-s + 4·23-s + 25-s − 27-s − 2·29-s + 4·31-s + 4·33-s − 35-s + 10·37-s + 39-s − 2·41-s − 8·43-s − 45-s − 8·47-s + 49-s − 6·51-s + 6·53-s + 4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 1.20·11-s − 0.277·13-s + 0.258·15-s + 1.45·17-s − 1.83·19-s − 0.218·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.718·31-s + 0.696·33-s − 0.169·35-s + 1.64·37-s + 0.160·39-s − 0.312·41-s − 1.21·43-s − 0.149·45-s − 1.16·47-s + 1/7·49-s − 0.840·51-s + 0.824·53-s + 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21840\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(174.393\)
Root analytic conductor: \(13.2058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 21840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.75299552596513, −15.19010328249659, −14.92855367128418, −14.32782873700447, −13.51763146223314, −12.92193375581025, −12.63831108118567, −11.98902928882785, −11.39276710001992, −10.91735140736048, −10.37341509550363, −9.932238838776741, −9.204365638718424, −8.264078162487634, −8.052547274508253, −7.460135529355257, −6.692482354522563, −6.140423401196292, −5.368961464907554, −4.888907134439819, −4.348028856148983, −3.464202944810000, −2.746082812300304, −1.929473741124518, −0.9166153405684555, 0, 0.9166153405684555, 1.929473741124518, 2.746082812300304, 3.464202944810000, 4.348028856148983, 4.888907134439819, 5.368961464907554, 6.140423401196292, 6.692482354522563, 7.460135529355257, 8.052547274508253, 8.264078162487634, 9.204365638718424, 9.932238838776741, 10.37341509550363, 10.91735140736048, 11.39276710001992, 11.98902928882785, 12.63831108118567, 12.92193375581025, 13.51763146223314, 14.32782873700447, 14.92855367128418, 15.19010328249659, 15.75299552596513

Graph of the $Z$-function along the critical line