Properties

Label 2-214896-1.1-c1-0-41
Degree $2$
Conductor $214896$
Sign $-1$
Analytic cond. $1715.95$
Root an. cond. $41.4240$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 6·13-s + 15-s + 3·17-s − 6·19-s + 21-s + 23-s − 4·25-s − 27-s − 29-s − 4·31-s + 35-s + 37-s − 6·39-s + 2·41-s + 8·43-s − 45-s + 4·47-s − 6·49-s − 3·51-s + 4·53-s + 6·57-s − 12·59-s − 14·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.66·13-s + 0.258·15-s + 0.727·17-s − 1.37·19-s + 0.218·21-s + 0.208·23-s − 4/5·25-s − 0.192·27-s − 0.185·29-s − 0.718·31-s + 0.169·35-s + 0.164·37-s − 0.960·39-s + 0.312·41-s + 1.21·43-s − 0.149·45-s + 0.583·47-s − 6/7·49-s − 0.420·51-s + 0.549·53-s + 0.794·57-s − 1.56·59-s − 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 214896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 214896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(214896\)    =    \(2^{4} \cdot 3 \cdot 11^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(1715.95\)
Root analytic conductor: \(41.4240\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 214896,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12863497131443, −12.76075371266794, −12.24308787997407, −11.92104379935908, −11.16410419331973, −10.98843190267046, −10.60405043262320, −10.04570834889212, −9.472207056607928, −8.871804194339057, −8.666798326457198, −7.881132313574859, −7.570419650190992, −7.052696547749947, −6.239287204626091, −6.057164326240337, −5.765186348455895, −4.917342241227238, −4.294771846857147, −3.992987510272013, −3.378324562685887, −2.901261423238078, −1.942585358273212, −1.467048084864620, −0.7019456171608123, 0, 0.7019456171608123, 1.467048084864620, 1.942585358273212, 2.901261423238078, 3.378324562685887, 3.992987510272013, 4.294771846857147, 4.917342241227238, 5.765186348455895, 6.057164326240337, 6.239287204626091, 7.052696547749947, 7.570419650190992, 7.881132313574859, 8.666798326457198, 8.871804194339057, 9.472207056607928, 10.04570834889212, 10.60405043262320, 10.98843190267046, 11.16410419331973, 11.92104379935908, 12.24308787997407, 12.76075371266794, 13.12863497131443

Graph of the $Z$-function along the critical line