L(s) = 1 | − 2·3-s − 2·7-s + 9-s − 2·13-s − 6·17-s − 4·19-s + 4·21-s + 4·27-s + 6·29-s + 4·31-s + 2·37-s + 4·39-s + 6·41-s + 10·43-s − 6·47-s − 3·49-s + 12·51-s − 6·53-s + 8·57-s − 12·59-s − 2·61-s − 2·63-s − 2·67-s + 12·71-s − 2·73-s + 8·79-s − 11·81-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.755·7-s + 1/3·9-s − 0.554·13-s − 1.45·17-s − 0.917·19-s + 0.872·21-s + 0.769·27-s + 1.11·29-s + 0.718·31-s + 0.328·37-s + 0.640·39-s + 0.937·41-s + 1.52·43-s − 0.875·47-s − 3/7·49-s + 1.68·51-s − 0.824·53-s + 1.05·57-s − 1.56·59-s − 0.256·61-s − 0.251·63-s − 0.244·67-s + 1.42·71-s − 0.234·73-s + 0.900·79-s − 1.22·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 10 T + p T^{2} \) |
| 47 | \( 1 + 6 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.00228418619092, −12.75665341872606, −12.23237309737730, −11.97314986962569, −11.24166099068490, −10.90445323361229, −10.67518142999101, −10.00027913760533, −9.555907532779929, −9.086226047208854, −8.569591601682723, −7.990499620368098, −7.470235081329580, −6.638108540374705, −6.547725124612121, −6.156470769739191, −5.614695357288647, −4.796884634118764, −4.635562562247647, −4.112463655446853, −3.269526651404290, −2.646934085891658, −2.264090339457877, −1.319394610645741, −0.5450275462336395, 0,
0.5450275462336395, 1.319394610645741, 2.264090339457877, 2.646934085891658, 3.269526651404290, 4.112463655446853, 4.635562562247647, 4.796884634118764, 5.614695357288647, 6.156470769739191, 6.547725124612121, 6.638108540374705, 7.470235081329580, 7.990499620368098, 8.569591601682723, 9.086226047208854, 9.555907532779929, 10.00027913760533, 10.67518142999101, 10.90445323361229, 11.24166099068490, 11.97314986962569, 12.23237309737730, 12.75665341872606, 13.00228418619092