L(s) = 1 | − 2·2-s − 3-s + 2·4-s + 2·6-s − 5·7-s + 9-s − 2·12-s − 6·13-s + 10·14-s − 4·16-s + 17-s − 2·18-s − 2·19-s + 5·21-s + 23-s + 12·26-s − 27-s − 10·28-s + 29-s − 5·31-s + 8·32-s − 2·34-s + 2·36-s + 7·37-s + 4·38-s + 6·39-s + 7·41-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s − 1.88·7-s + 1/3·9-s − 0.577·12-s − 1.66·13-s + 2.67·14-s − 16-s + 0.242·17-s − 0.471·18-s − 0.458·19-s + 1.09·21-s + 0.208·23-s + 2.35·26-s − 0.192·27-s − 1.88·28-s + 0.185·29-s − 0.898·31-s + 1.41·32-s − 0.342·34-s + 1/3·36-s + 1.15·37-s + 0.648·38-s + 0.960·39-s + 1.09·41-s + ⋯ |
Λ(s)=(=(208725s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(208725s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 11 | 1 |
| 23 | 1−T |
good | 2 | 1+pT+pT2 |
| 7 | 1+5T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−T+pT2 |
| 19 | 1+2T+pT2 |
| 29 | 1−T+pT2 |
| 31 | 1+5T+pT2 |
| 37 | 1−7T+pT2 |
| 41 | 1−7T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1+9T+pT2 |
| 59 | 1−3T+pT2 |
| 61 | 1+12T+pT2 |
| 67 | 1−T+pT2 |
| 71 | 1−5T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−3T+pT2 |
| 89 | 1−8T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.06284212792602, −12.68165504942170, −12.25288414920217, −11.92329346603056, −11.13106971259212, −10.75147340453941, −10.32412946485382, −9.814469451550098, −9.541750345402851, −9.253902604003219, −8.723526752503129, −7.980156188337239, −7.422269552730471, −7.243202899285689, −6.648326835160661, −6.200472918362076, −5.756370125496938, −4.969241692509509, −4.514459858717073, −3.830172927057493, −3.167106148656592, −2.502846871531705, −2.144977206642708, −1.150057823625039, −0.4874063002971954, 0,
0.4874063002971954, 1.150057823625039, 2.144977206642708, 2.502846871531705, 3.167106148656592, 3.830172927057493, 4.514459858717073, 4.969241692509509, 5.756370125496938, 6.200472918362076, 6.648326835160661, 7.243202899285689, 7.422269552730471, 7.980156188337239, 8.723526752503129, 9.253902604003219, 9.541750345402851, 9.814469451550098, 10.32412946485382, 10.75147340453941, 11.13106971259212, 11.92329346603056, 12.25288414920217, 12.68165504942170, 13.06284212792602