L(s) = 1 | − 2-s + 4-s − 5-s − 8-s + 10-s − 4·11-s − 2·13-s + 16-s + 6·17-s + 4·19-s − 20-s + 4·22-s + 23-s + 25-s + 2·26-s + 2·29-s − 32-s − 6·34-s − 2·37-s − 4·38-s + 40-s − 10·41-s − 4·43-s − 4·44-s − 46-s − 7·49-s − 50-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 1.20·11-s − 0.554·13-s + 1/4·16-s + 1.45·17-s + 0.917·19-s − 0.223·20-s + 0.852·22-s + 0.208·23-s + 1/5·25-s + 0.392·26-s + 0.371·29-s − 0.176·32-s − 1.02·34-s − 0.328·37-s − 0.648·38-s + 0.158·40-s − 1.56·41-s − 0.609·43-s − 0.603·44-s − 0.147·46-s − 49-s − 0.141·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 23 | \( 1 - T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 18 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.50234704852203, −18.98874005090660, −18.31281649445369, −17.95507409746247, −16.89017558815082, −16.60644510575062, −15.73149512181039, −15.35111424420008, −14.50944947423345, −13.80804465836127, −12.90038668611946, −12.19960000816225, −11.66800856721595, −10.80691166017936, −10.09137212961524, −9.664589981070879, −8.609088489832512, −7.877013836580382, −7.495811251421517, −6.579979843118159, −5.448411665587810, −4.900369829758244, −3.442210252179751, −2.790626623842764, −1.415434150210406, 0,
1.415434150210406, 2.790626623842764, 3.442210252179751, 4.900369829758244, 5.448411665587810, 6.579979843118159, 7.495811251421517, 7.877013836580382, 8.609088489832512, 9.664589981070879, 10.09137212961524, 10.80691166017936, 11.66800856721595, 12.19960000816225, 12.90038668611946, 13.80804465836127, 14.50944947423345, 15.35111424420008, 15.73149512181039, 16.60644510575062, 16.89017558815082, 17.95507409746247, 18.31281649445369, 18.98874005090660, 19.50234704852203