Properties

Label 2-20691-1.1-c1-0-8
Degree $2$
Conductor $20691$
Sign $1$
Analytic cond. $165.218$
Root an. cond. $12.8537$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 4·7-s − 3·8-s + 4·13-s + 4·14-s − 16-s + 6·17-s + 19-s − 5·25-s + 4·26-s − 4·28-s − 2·29-s + 4·31-s + 5·32-s + 6·34-s − 2·37-s + 38-s + 10·41-s − 4·43-s − 8·47-s + 9·49-s − 5·50-s − 4·52-s + 12·53-s − 12·56-s − 2·58-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 1.51·7-s − 1.06·8-s + 1.10·13-s + 1.06·14-s − 1/4·16-s + 1.45·17-s + 0.229·19-s − 25-s + 0.784·26-s − 0.755·28-s − 0.371·29-s + 0.718·31-s + 0.883·32-s + 1.02·34-s − 0.328·37-s + 0.162·38-s + 1.56·41-s − 0.609·43-s − 1.16·47-s + 9/7·49-s − 0.707·50-s − 0.554·52-s + 1.64·53-s − 1.60·56-s − 0.262·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20691 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20691 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20691\)    =    \(3^{2} \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(165.218\)
Root analytic conductor: \(12.8537\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20691,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.813928131\)
\(L(\frac12)\) \(\approx\) \(3.813928131\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.53060618105080, −14.78203144419642, −14.51042141723963, −14.03220584007963, −13.51558178994402, −13.06520424533363, −12.29829612879061, −11.80542711209357, −11.41916857898962, −10.80079631773105, −10.01086435219661, −9.582716665199400, −8.681065484924217, −8.356645960338766, −7.814974775941224, −7.179963953819243, −6.080132306988609, −5.773735147548701, −5.120723199290567, −4.600502853562242, −3.837548452535332, −3.449828582944661, −2.436189274549425, −1.488203418870444, −0.7886652810255925, 0.7886652810255925, 1.488203418870444, 2.436189274549425, 3.449828582944661, 3.837548452535332, 4.600502853562242, 5.120723199290567, 5.773735147548701, 6.080132306988609, 7.179963953819243, 7.814974775941224, 8.356645960338766, 8.681065484924217, 9.582716665199400, 10.01086435219661, 10.80079631773105, 11.41916857898962, 11.80542711209357, 12.29829612879061, 13.06520424533363, 13.51558178994402, 14.03220584007963, 14.51042141723963, 14.78203144419642, 15.53060618105080

Graph of the $Z$-function along the critical line