Properties

Label 2-20160-1.1-c1-0-29
Degree $2$
Conductor $20160$
Sign $1$
Analytic cond. $160.978$
Root an. cond. $12.6877$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s + 4·11-s + 6·13-s − 6·17-s − 4·19-s − 4·23-s + 25-s − 2·29-s − 8·31-s − 35-s − 6·37-s − 6·41-s + 8·43-s + 49-s + 6·53-s + 4·55-s + 4·59-s − 10·61-s + 6·65-s + 8·67-s + 12·71-s − 14·73-s − 4·77-s + 16·79-s + 12·83-s − 6·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s + 1.20·11-s + 1.66·13-s − 1.45·17-s − 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.371·29-s − 1.43·31-s − 0.169·35-s − 0.986·37-s − 0.937·41-s + 1.21·43-s + 1/7·49-s + 0.824·53-s + 0.539·55-s + 0.520·59-s − 1.28·61-s + 0.744·65-s + 0.977·67-s + 1.42·71-s − 1.63·73-s − 0.455·77-s + 1.80·79-s + 1.31·83-s − 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20160\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(160.978\)
Root analytic conductor: \(12.6877\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.203555292\)
\(L(\frac12)\) \(\approx\) \(2.203555292\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.61436163551664, −15.24464080920357, −14.40649036443695, −14.06314677308826, −13.36980590599996, −13.09846524760841, −12.42555846543627, −11.76794619062268, −11.15766514299013, −10.72488245584010, −10.20960951914631, −9.232440807317811, −9.012938475227982, −8.586534344867953, −7.761583110106062, −6.798662351404793, −6.541382296055403, −5.998334456849256, −5.353425320753953, −4.308643334633613, −3.889989857950881, −3.321500382524666, −2.077367220453996, −1.758476695572186, −0.6052744259921387, 0.6052744259921387, 1.758476695572186, 2.077367220453996, 3.321500382524666, 3.889989857950881, 4.308643334633613, 5.353425320753953, 5.998334456849256, 6.541382296055403, 6.798662351404793, 7.761583110106062, 8.586534344867953, 9.012938475227982, 9.232440807317811, 10.20960951914631, 10.72488245584010, 11.15766514299013, 11.76794619062268, 12.42555846543627, 13.09846524760841, 13.36980590599996, 14.06314677308826, 14.40649036443695, 15.24464080920357, 15.61436163551664

Graph of the $Z$-function along the critical line