Properties

Label 2-20160-1.1-c1-0-92
Degree $2$
Conductor $20160$
Sign $-1$
Analytic cond. $160.978$
Root an. cond. $12.6877$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s − 2·13-s − 2·17-s − 4·19-s + 25-s + 2·29-s + 4·31-s − 35-s − 2·37-s + 2·41-s − 8·43-s + 4·47-s + 49-s − 2·53-s + 12·59-s + 14·61-s + 2·65-s − 8·67-s + 8·71-s − 2·73-s + 8·79-s − 4·83-s + 2·85-s + 18·89-s − 2·91-s + 4·95-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s − 0.554·13-s − 0.485·17-s − 0.917·19-s + 1/5·25-s + 0.371·29-s + 0.718·31-s − 0.169·35-s − 0.328·37-s + 0.312·41-s − 1.21·43-s + 0.583·47-s + 1/7·49-s − 0.274·53-s + 1.56·59-s + 1.79·61-s + 0.248·65-s − 0.977·67-s + 0.949·71-s − 0.234·73-s + 0.900·79-s − 0.439·83-s + 0.216·85-s + 1.90·89-s − 0.209·91-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20160\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(160.978\)
Root analytic conductor: \(12.6877\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.85960233393140, −15.36457639590078, −14.79812501603846, −14.46808864295425, −13.71165453316843, −13.21070007336571, −12.59677397050399, −12.07290705583705, −11.50535191582248, −11.07981178848819, −10.26381126071857, −10.03367328728605, −9.048916715684431, −8.643568651708998, −8.034512584087757, −7.505792714830146, −6.702837260722253, −6.399481863014592, −5.354185768809092, −4.898087783459106, −4.187818426872092, −3.630151936581736, −2.629290565444495, −2.097959899160967, −1.021497793605958, 0, 1.021497793605958, 2.097959899160967, 2.629290565444495, 3.630151936581736, 4.187818426872092, 4.898087783459106, 5.354185768809092, 6.399481863014592, 6.702837260722253, 7.505792714830146, 8.034512584087757, 8.643568651708998, 9.048916715684431, 10.03367328728605, 10.26381126071857, 11.07981178848819, 11.50535191582248, 12.07290705583705, 12.59677397050399, 13.21070007336571, 13.71165453316843, 14.46808864295425, 14.79812501603846, 15.36457639590078, 15.85960233393140

Graph of the $Z$-function along the critical line