Properties

Label 2-1920-1.1-c1-0-23
Degree $2$
Conductor $1920$
Sign $-1$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2·7-s + 9-s − 2·11-s − 2·13-s + 15-s − 2·17-s + 2·19-s − 2·21-s + 2·23-s + 25-s − 27-s − 6·29-s + 4·31-s + 2·33-s − 2·35-s + 2·37-s + 2·39-s − 10·41-s − 8·43-s − 45-s + 2·47-s − 3·49-s + 2·51-s + 6·53-s + 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s − 0.554·13-s + 0.258·15-s − 0.485·17-s + 0.458·19-s − 0.436·21-s + 0.417·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 0.718·31-s + 0.348·33-s − 0.338·35-s + 0.328·37-s + 0.320·39-s − 1.56·41-s − 1.21·43-s − 0.149·45-s + 0.291·47-s − 3/7·49-s + 0.280·51-s + 0.824·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.705036166814153428105798308798, −7.952538608603195590481697514514, −7.28611523744367416618862524272, −6.50241985693379192242474365828, −5.34080329196659824170043396266, −4.91664731218580831508240373286, −3.95381617705721166703230154549, −2.76503835786649061543002361048, −1.52877886661374831253428270259, 0, 1.52877886661374831253428270259, 2.76503835786649061543002361048, 3.95381617705721166703230154549, 4.91664731218580831508240373286, 5.34080329196659824170043396266, 6.50241985693379192242474365828, 7.28611523744367416618862524272, 7.952538608603195590481697514514, 8.705036166814153428105798308798

Graph of the $Z$-function along the critical line