L(s) = 1 | + 4·7-s − 3·9-s + 6·11-s − 2·13-s + 6·17-s − 6·19-s + 23-s − 5·25-s − 6·29-s − 8·37-s + 6·41-s − 2·43-s − 8·47-s + 9·49-s − 8·53-s + 4·59-s − 4·61-s − 12·63-s + 2·67-s − 8·71-s + 6·73-s + 24·77-s + 12·79-s + 9·81-s + 10·83-s + 10·89-s − 8·91-s + ⋯ |
L(s) = 1 | + 1.51·7-s − 9-s + 1.80·11-s − 0.554·13-s + 1.45·17-s − 1.37·19-s + 0.208·23-s − 25-s − 1.11·29-s − 1.31·37-s + 0.937·41-s − 0.304·43-s − 1.16·47-s + 9/7·49-s − 1.09·53-s + 0.520·59-s − 0.512·61-s − 1.51·63-s + 0.244·67-s − 0.949·71-s + 0.702·73-s + 2.73·77-s + 1.35·79-s + 81-s + 1.09·83-s + 1.05·89-s − 0.838·91-s + ⋯ |
Λ(s)=(=(184s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(184s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.298974796 |
L(21) |
≈ |
1.298974796 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1 | |
| 23 | 1−T | |
good | 3 | 1+pT2 | 1.3.a |
| 5 | 1+pT2 | 1.5.a |
| 7 | 1−4T+pT2 | 1.7.ae |
| 11 | 1−6T+pT2 | 1.11.ag |
| 13 | 1+2T+pT2 | 1.13.c |
| 17 | 1−6T+pT2 | 1.17.ag |
| 19 | 1+6T+pT2 | 1.19.g |
| 29 | 1+6T+pT2 | 1.29.g |
| 31 | 1+pT2 | 1.31.a |
| 37 | 1+8T+pT2 | 1.37.i |
| 41 | 1−6T+pT2 | 1.41.ag |
| 43 | 1+2T+pT2 | 1.43.c |
| 47 | 1+8T+pT2 | 1.47.i |
| 53 | 1+8T+pT2 | 1.53.i |
| 59 | 1−4T+pT2 | 1.59.ae |
| 61 | 1+4T+pT2 | 1.61.e |
| 67 | 1−2T+pT2 | 1.67.ac |
| 71 | 1+8T+pT2 | 1.71.i |
| 73 | 1−6T+pT2 | 1.73.ag |
| 79 | 1−12T+pT2 | 1.79.am |
| 83 | 1−10T+pT2 | 1.83.ak |
| 89 | 1−10T+pT2 | 1.89.ak |
| 97 | 1+18T+pT2 | 1.97.s |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.30242903509008952465429621319, −11.65285962273059824600304475216, −10.90027717989387157107373838421, −9.505020586152698277492779622129, −8.532719042369230860273239674478, −7.65153069290109703677672880782, −6.23214576271461606194158210231, −5.07527273844982488833791664872, −3.76029121491255918011647406142, −1.77632184622518044349130059263,
1.77632184622518044349130059263, 3.76029121491255918011647406142, 5.07527273844982488833791664872, 6.23214576271461606194158210231, 7.65153069290109703677672880782, 8.532719042369230860273239674478, 9.505020586152698277492779622129, 10.90027717989387157107373838421, 11.65285962273059824600304475216, 12.30242903509008952465429621319