Properties

Label 2-1760-1.1-c1-0-25
Degree $2$
Conductor $1760$
Sign $-1$
Analytic cond. $14.0536$
Root an. cond. $3.74882$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 2·7-s + 9-s + 11-s − 2·13-s + 2·15-s − 2·17-s − 4·21-s + 2·23-s + 25-s + 4·27-s − 2·29-s + 4·31-s − 2·33-s − 2·35-s − 6·37-s + 4·39-s + 6·41-s − 6·43-s − 45-s + 6·47-s − 3·49-s + 4·51-s − 6·53-s − 55-s − 6·61-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s + 0.516·15-s − 0.485·17-s − 0.872·21-s + 0.417·23-s + 1/5·25-s + 0.769·27-s − 0.371·29-s + 0.718·31-s − 0.348·33-s − 0.338·35-s − 0.986·37-s + 0.640·39-s + 0.937·41-s − 0.914·43-s − 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.560·51-s − 0.824·53-s − 0.134·55-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1760\)    =    \(2^{5} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(14.0536\)
Root analytic conductor: \(3.74882\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.843984192067285101836130819770, −8.088328180965082136300526227350, −7.18926419098018223210703504685, −6.50409204323732348541055422680, −5.55932699453271263805116094930, −4.86901233271988171005468978851, −4.16042505835541806862747528745, −2.81577938725062240394015803216, −1.40075843522825882104989949861, 0, 1.40075843522825882104989949861, 2.81577938725062240394015803216, 4.16042505835541806862747528745, 4.86901233271988171005468978851, 5.55932699453271263805116094930, 6.50409204323732348541055422680, 7.18926419098018223210703504685, 8.088328180965082136300526227350, 8.843984192067285101836130819770

Graph of the $Z$-function along the critical line