Properties

Label 2-172062-1.1-c1-0-46
Degree $2$
Conductor $172062$
Sign $1$
Analytic cond. $1373.92$
Root an. cond. $37.0664$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·7-s + 8-s + 4·13-s − 2·14-s + 16-s − 8·17-s − 8·19-s + 23-s − 5·25-s + 4·26-s − 2·28-s + 3·29-s + 32-s − 8·34-s + 7·37-s − 8·38-s − 12·41-s − 11·43-s + 46-s − 6·47-s − 3·49-s − 5·50-s + 4·52-s − 5·53-s − 2·56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.755·7-s + 0.353·8-s + 1.10·13-s − 0.534·14-s + 1/4·16-s − 1.94·17-s − 1.83·19-s + 0.208·23-s − 25-s + 0.784·26-s − 0.377·28-s + 0.557·29-s + 0.176·32-s − 1.37·34-s + 1.15·37-s − 1.29·38-s − 1.87·41-s − 1.67·43-s + 0.147·46-s − 0.875·47-s − 3/7·49-s − 0.707·50-s + 0.554·52-s − 0.686·53-s − 0.267·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172062 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172062 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172062\)    =    \(2 \cdot 3^{2} \cdot 11^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1373.92\)
Root analytic conductor: \(37.0664\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 172062,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
11 \( 1 \)
79 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 11 T + p T^{2} \) 1.73.l
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54903511611226, −13.15337709470288, −13.03234048079857, −12.33711532711968, −11.81995837687361, −11.31630288161228, −10.92276274124705, −10.50766202143086, −9.983306213429965, −9.376003098813942, −8.849445066234997, −8.377177126693979, −8.041211251862230, −7.197293923794194, −6.530311276322964, −6.369019333913136, −6.167850200190444, −5.258787411575130, −4.622884977502073, −4.275721197205799, −3.780255319246787, −3.064486759395066, −2.705314745948012, −1.725797398577206, −1.608795781240418, 0, 0, 1.608795781240418, 1.725797398577206, 2.705314745948012, 3.064486759395066, 3.780255319246787, 4.275721197205799, 4.622884977502073, 5.258787411575130, 6.167850200190444, 6.369019333913136, 6.530311276322964, 7.197293923794194, 8.041211251862230, 8.377177126693979, 8.849445066234997, 9.376003098813942, 9.983306213429965, 10.50766202143086, 10.92276274124705, 11.31630288161228, 11.81995837687361, 12.33711532711968, 13.03234048079857, 13.15337709470288, 13.54903511611226

Graph of the $Z$-function along the critical line